Helping robots cope with uncertainty

Robots are getting smarter all the time, and are now able to perform highly complex activities, yet there are still large numbers of tasks which are second nature to humans but leave robots largely stumped. For example, we are able to recognise someone we know in a large crowd, even if they are wearing sunglasses and a hat. In contrast robots would simply be unable to carry out this task, as they are ill equipped to handle unpredictable situations where they do not have full knowledge.

The BACS (Bayesian Approach to Cognitive Systems) project, which is funded under the information society technologies (IST) section of the EU's Sixth Framework Programme (FP6), aims to design an artificial system which would enable robots to cope with a real world environment, where uncertainty and unfamiliarity are the order of the day. At the heart of the project is Bayes' theorem, which provides a model for making rational judgements when only uncertain and incomplete information is available. It lends itself particularly well to questions relating to learning from experience.

Humans are particularly good at responding to unpredictable situations and taking decisions without having all the facts. The project partners will exploit this fact by looking at humans and rats responding to realistic situations, and analysing the processes and neural pathways involved. They will then map these onto an artificial cognitive system to create robots which are able to handle incomplete information, analyse their environment, interpret the data and take decisions.

The resulting system could have a range of useful applications. Devices already exist which warn car drivers when they are too close to the car in front. A 'virtual co-driver' could extend this concept much further to improve road safety. While the human would remain in control of the car, the co-driver would monitor the driver's reactions to the traffic around them, the road, potential obstacles and other factors. If the driver starts to make mistakes in their driving, for example if they have fallen asleep at the wheel, the virtual co-driver could detect this and over-ride the actions of the human driver.

"This should make driving safer for both drivers and pedestrians" said Roland Siegwart, Professor of Autonomous Systems at the Swiss Federal Institute of Technology.

Another area where the researchers plan to learn from human abilities is surveillance. We have a natural ability to identify the unusual in a situation. By exploring how we do this, the researchers hope to create security robots which could identify an attack or unexpected presence.

The 10-partner project is coordinated by the Swiss Federal Institute of Technology in Zurich and is due to run until 2010.

For further information, please visit:
www.bacs.ethz.ch

Copyright ©European Communities, 2006
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg – http://cordis.europa.eu.int. Access to CORDIS is currently available free-of-charge.

Most Popular Now

Stanford Medicine Study Suggests Physici…

Artificial intelligence-powered chatbots are getting pretty good at diagnosing some diseases, even when they are complex. But how do chatbots do when guiding treatment and care after the diagnosis? For...

OmicsFootPrint: Mayo Clinic's AI To…

Mayo Clinic researchers have pioneered an artificial intelligence (AI) tool, called OmicsFootPrint, that helps convert vast amounts of complex biological data into two-dimensional circular images. The details of the tool...

Testing AI with AI: Ensuring Effective A…

Using a pioneering artificial intelligence platform, Flinders University researchers have assessed whether a cardiac AI tool recently trialled in South Australian hospitals actually has the potential to assist doctors and...

Adults don't Trust Health Care to U…

A study finds that 65.8% of adults surveyed had low trust in their health care system to use artificial intelligence responsibly and 57.7% had low trust in their health care...

AI Unlocks Genetic Clues to Personalize …

A groundbreaking study led by USC Assistant Professor of Computer Science Ruishan Liu has uncovered how specific genetic mutations influence cancer treatment outcomes - insights that could help doctors tailor...

The 10 Year Health Plan: What do We Need…

Opinion Article by Piyush Mahapatra, Consultant Orthopaedic Surgeon and Chief Innovation Officer at Open Medical. There is a new ten-year plan for the NHS. It will "focus efforts on preventing, as...

Deep Learning to Increase Accessibility…

Coronary artery disease is the leading cause of death globally. One of the most common tools used to diagnose and monitor heart disease, myocardial perfusion imaging (MPI) by single photon...

People's Trust in AI Systems to Mak…

Psychologists warn that AI's perceived lack of human experience and genuine understanding may limit its acceptance to make higher-stakes moral decisions. Artificial moral advisors (AMAs) are systems based on artificial...

DMEA 2025 - Innovations, Insights and Ne…

8 - 10 April 2025, Berlin, Germany. Less than 50 days to go before DMEA 2025 opens its doors: Europe's leading event for digital health will once again bring together experts...

Relationship Between Sleep and Nutrition…

Diet and sleep, which are essential for human survival, are interrelated. However, recently, various services and mobile applications have been introduced for the self-management of health, allowing users to record...

New AI Tool Mimics Radiologist Gaze to R…

Artificial intelligence (AI) can scan a chest X-ray and diagnose if an abnormality is fluid in the lungs, an enlarged heart or cancer. But being right is not enough, said...

AI Model can Read ECGs to Identify Femal…

A new AI model can flag female patients who are at higher risk of heart disease based on an electrocardiogram (ECG). The researchers say the algorithm, designed specifically for female patients...