Helping robots cope with uncertainty

Robots are getting smarter all the time, and are now able to perform highly complex activities, yet there are still large numbers of tasks which are second nature to humans but leave robots largely stumped. For example, we are able to recognise someone we know in a large crowd, even if they are wearing sunglasses and a hat. In contrast robots would simply be unable to carry out this task, as they are ill equipped to handle unpredictable situations where they do not have full knowledge.

The BACS (Bayesian Approach to Cognitive Systems) project, which is funded under the information society technologies (IST) section of the EU's Sixth Framework Programme (FP6), aims to design an artificial system which would enable robots to cope with a real world environment, where uncertainty and unfamiliarity are the order of the day. At the heart of the project is Bayes' theorem, which provides a model for making rational judgements when only uncertain and incomplete information is available. It lends itself particularly well to questions relating to learning from experience.

Humans are particularly good at responding to unpredictable situations and taking decisions without having all the facts. The project partners will exploit this fact by looking at humans and rats responding to realistic situations, and analysing the processes and neural pathways involved. They will then map these onto an artificial cognitive system to create robots which are able to handle incomplete information, analyse their environment, interpret the data and take decisions.

The resulting system could have a range of useful applications. Devices already exist which warn car drivers when they are too close to the car in front. A 'virtual co-driver' could extend this concept much further to improve road safety. While the human would remain in control of the car, the co-driver would monitor the driver's reactions to the traffic around them, the road, potential obstacles and other factors. If the driver starts to make mistakes in their driving, for example if they have fallen asleep at the wheel, the virtual co-driver could detect this and over-ride the actions of the human driver.

"This should make driving safer for both drivers and pedestrians" said Roland Siegwart, Professor of Autonomous Systems at the Swiss Federal Institute of Technology.

Another area where the researchers plan to learn from human abilities is surveillance. We have a natural ability to identify the unusual in a situation. By exploring how we do this, the researchers hope to create security robots which could identify an attack or unexpected presence.

The 10-partner project is coordinated by the Swiss Federal Institute of Technology in Zurich and is due to run until 2010.

For further information, please visit:
www.bacs.ethz.ch

Copyright ©European Communities, 2006
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg – http://cordis.europa.eu.int. Access to CORDIS is currently available free-of-charge.

Most Popular Now

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...

Shape-Changing Device Helps Visually Imp…

Researchers from Imperial College London, working with the company MakeSense Technology and the charity Bravo Victor, have developed a shape-changing device called Shape that helps people with visual impairment navigate...

Bayer Acquires HiDoc Technologies and Ca…

Bayer is today announcing that it plans to acquire HiDoc Technologies GmbH in the first quarter of 2025 and to start commercialization of the digital health application, Cara Care®. Cara...