Remote health monitoring for better care, lower costs

The economic and social burden of healthcare is weighing heavily on governments, healthcare providers and citizens, particularly as Europeans age. However e-health tools – such as mobile monitoring applications for patients and their care providers – are enabling care services to be redesigned to be more flexible and effective.

The mobility of chronically ill people, or those living with a condition that needs regular monitoring, is often limited. Their lives are planned around hospital visits, check ups and overnight stays. Many feel insecure when they are away from their healthcare providers and worry about risks to their health.

The HEALTHSERVICE 24 (HS24) project – with funding from the European Commission's eTEN programme – provides one solution to the challenges ahead. The project partners have developed an innovative mobile healthcare system that supports patients’ and health professionals' mobility, increases patients' quality of life and reduces healthcare costs.

"Our concept targets non-critical patients who use a lot of hospital resources, but because they are non-critical could be easily monitored from home," explains project coordinator Jennie Weingartner of Ericsson Germany in Düsseldorf. "HS24 gives them more freedom, while fulfilling one of Europe's e-health priorities to provide restructured, citizen-centred health systems."

High quality treatment and follow up anytime, anywhere
The system allows healthcare professionals to follow-up patients remotely, while the patients are free to continue their daily activities. It also enables these patients to monitor their own physical condition and obtain advice and information.

The number of chronically ill patients in Europe over the next decade is estimated to rise to more than 100 million. Weingartner says the economic potential of mobile health services is high. If just one out of 10 of these patients uses a mobile health service, it can result in substantial economic savings. "We expect mobile health services to play a fundamental role in transforming today's health model, allowing access to high quality treatment and follow-up, anytime from anywhere" she adds.

For example, in the UK the yearly costs for a person participating in a SEDS (Supervised Exercise, Diet and Stress management) programme is around 41,000 euros for conventional treatment. By contrast, the annual cost for mobile patient management is just 15,000 euros.

State-of-the-art networks and technology
The HS24 platform is based on advanced concepts and technologies such as Body Area Networks (BAN), 2.5/3G wireless broadband communications (GPRS/UMTS) and wearable medical devices. Users are equipped with sensors interconnected under a BAN, and managed by a PDA or mobile telephone. The collected data is transmitted continuously via a wireless UMTS or GPRS service to a medical centre or directly to medical professionals.

Content-management functions enable immediate analysis of individual body data and personalised patient feedback in real time using alarms and reminders. The system monitors vital signs such as ECG, EMG (electromyography), oxygen saturation, respiration, activity and temperature. "Patients can be remotely assessed, diagnosed and treated," says Weingartner. "In the case of rapidly deteriorating medical conditions, the data centre can send an SMS alarm or provide the patient with first-level medical support."

Benefits realised across the system
The benefits offered by such mobile systems can be realised across the healthcare profession. Patients benefit from better accessibility; while healthcare professionals can be more efficient and accurate in following up patient histories with easily available patient data. Families can reduce the time lost in visits to the hospital, which in turn reduces the number of occupied beds that require monitoring, making room for more critical patients.

Insurance companies and national governments also stand to benefit from reduced hospitalisation time for non-critical patients. Healthcare payers gain through reduced patient treatment costs, better resource management and significant health-economic improvements.

Patient trials a success
Project trials ran from September 2005 to July 2006, and involved patients with varying health conditions at three different sites. The goal was to test the system in real-life scenarios to assess the feasibility of integrating HS24 into the clinical process and testing market viability.

"Our trials showed that a mobile health monitoring system can easily co-exist with other forms of service delivery by supplementing them or replacing previous practices," says Weingartner. "Patients and medical practitioners are very enthusiastic about the system."

The monitoring of high risk pregnancies by one project partner, Medisch Spectrum Twente in the Netherlands, showed that the potential financial benefits can be very high, and that integrating mobile patient monitoring is feasible at low cost. At another site, the Hospital Clínic Provincial de Barcelona, Spain, HS24 was used to support remote assistance during home-visits to elderly and chronically ill patients suffering from Chronic Obstructive Pulmonary Disease (COPD).

A further partner, LITO Polyclinic in Cyprus, tested two groups of cardiac patients, those with an acute episode and those in a suspected acute episode. This trial revealed shortcomings in the 'wearability' of the system and some problems with connectivity, which were addressed in subsequent development.

"Professionals have concluded that the system could easily be applied to their current work practices," Weingartner adds. "We learned a very important lesson. The process of incorporating a mobile monitoring solution is more of a socio-technical nature. Technology alone is not enough."

Ericsson has developed a certified commercial product based on the HS24 concept. Today, Weingartner says Ericsson Mobile Health is ready for global rollout. "The HS24 research system will be further developed by the University of Twente and if new applications prove successful in pilots, it may be possible to integrate them into the commercial version," she concludes.

Contact:
Jennie Weingartner
Ericsson GmbH
Advice Business Consulting
Fritz-Vomfelde St. 26
D-40547 Düsseldorf
Germany
Tel: +49 211 534 2234
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Source: IST Results Portal

Most Popular Now

Most Advanced Artificial Touch for Brain…

For the first time ever, a complex sense of touch for individuals living with spinal cord injuries is a step closer to reality. A new study published in Science, paves...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

New AI Tool Uses Routine Blood Tests to …

Doctors around the world may soon have access to a new tool that could better predict whether individual cancer patients will benefit from immune checkpoint inhibitors - a type of...

Using AI to Uncover Hospital Patients�…

Across the United States, no hospital is the same. Equipment, staffing, technical capabilities, and patient populations can all differ. So, while the profiles developed for people with common conditions may...

New Method Tracks the 'Learning Cur…

Introducing Annotatability - a powerful new framework to address a major challenge in biological research by examining how artificial neural networks learn to label genomic data. Genomic datasets often contain...

Picking the Right Doctor? AI could Help

Years ago, as she sat in waiting rooms, Maytal Saar-Tsechansky began to wonder how people chose a good doctor when they had no way of knowing a doctor's track record...

From Text to Structured Information Secu…

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected...

AI Innovation Unlocks Non-Surgical Way t…

Researchers have developed an artificial intelligence (AI) model to detect the spread of metastatic brain cancer using MRI scans, offering insights into patients’ cancer without aggressive surgery. The proof-of-concept study, co-led...

Deep Learning Model Helps Detect Lung Tu…

A new deep learning model shows promise in detecting and segmenting lung tumors, according to a study published in Radiology, a journal of the Radiological Society of North America (RSNA)...

New Study Reveals AI's Transformati…

Intensive care units (ICUs) face mounting pressure to effectively manage resources while delivering optimal patient care. Groundbreaking research published in the INFORMS journal Information Systems Research highlights how a novel...

One of the Largest Global Surveys of Soc…

As leaders gather for the World Economic Forum Annual Meeting 2025 in Davos, Leaps by Bayer, the impact investing arm of Bayer, and Boston Consulting Group (BCG) announced the launch...