New Technique May Help Severely Damaged Nerves Regrow and Restore Function

Engineers at the University of Sheffield have developed a method of assisting nerves damaged by traumatic accidents to repair naturally, which could improve the chances of restoring sensation and movement in injured limbs. In a collaborative study with Laser Zentrum Hannover (Germany) published in the journal Biofabrication, the team describes a new method for making medical devices called nerve guidance conduits or NGCs.

The method is based on laser direct writing, which enables the fabrication of complex structures from computer files via the use of CAD/CAM (computer aided design/manufacturing), and has allowed the research team to manufacture NGCs with designs that are far more advanced than previously possible.

Currently patients with severe traumatic nerve damage suffer a devastating loss of sensation and/or movement in the affected limb. The traditional course of action, where possible, is to surgically suture or graft the nerve endings together. However, reconstructive surgery often does not result in complete recovery.

"When nerves in the arms or legs are injured they have the ability to re-grow, unlike in the spinal cord; however, they need assistance to do this," said University of Sheffield Professor of Bioengineering, John Haycock. "We are designing scaffold implants that can bridge an injury site and provide a range of physical and chemical cues for stimulating this regrowth."

The new conduit is made from a biodegradable synthetic polymer material based on polylactic acid and has been designed to guide damaged nerves to re-grow through a number of small channels.

"Nerves aren't just like one long cable, they're made up of lots of small cables, similar to how an electrical wire is constructed," said lead author Dr Frederik Claeyssens, of the University's Department of Materials Science and Engineering. "Using our new technique we can make a conduit with individual strands so the nerve fibres can form a similar structure to an undamaged nerve."

Once the nerve is fully regrown, the conduit biodegrades naturally. The team hopes that this approach will significantly increase recovery for a wide range of peripheral nerve injuries.

In laboratory experiments, nerve cells added to the polymer conduit grew naturally within its channelled structure and the research team is now working towards clinical trials.

"If successful we anticipate these scaffolds will not just be applicable to peripheral nerve injury, but could also be developed for other types of nerve damage too. The technique of laser direct writing may ultimately allow production of scaffolds that could help in the treatment of spinal cord injury" said Dr Claeyssens.

"What's exciting about this work is that not only have we designed a new method for making nerve guide scaffolds which support nerve growth, we've also developed a method of easily reproducing them through micromolding.

"This technology could make a huge difference to patients suffering severe nerve damage," he added.

This research was funded by the Engineering and Physical Sciences Research Council.

Most Popular Now

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...