High-Tech 'Whole Body' Scan could Improve Treatment of Bone Marrow Cancer

The new type of magnetic resonance imaging (MRI) scan could improve care for a type of cancer called myeloma and reduce reliance on bone marrow biopsies, which can be painful for patients and often fail to show doctors how far the disease has spread. The research was published in the journal Radiology and was carried out by researchers at The Institute of Cancer Research, London, and The Royal Marsden NHS Foundation Trust. It received funding from Cancer Research UK and the National Institute for Health Research Clinical Research Facility in Imaging, with additional funding from the EPSRC.

The new whole-body, diffusion-weighted MRI scans showed the spread of cancer throughout the bone marrow of patients with myeloma - one of the most common forms of blood cancer - more accurately than standard tests. The scans also showed whether the patients were responding to cancer treatments.

In the study 26 patients had whole-body, diffusion-weighted MRI scans before and after treatment. In 86% of cases, experienced doctors trained in imaging were able to correctly identify whether patients responded to treatment. The doctors also correctly identified those patients who weren't responding to treatment 80% of the time.

Using the scanning technique, doctors could pinpoint exactly where the cancer was in the bones, with the results available immediately. Conventional tests include bone marrow biopsies and blood tests but neither shows accurately where the cancer is present in the bones.

The researchers also assessed the visible changes on the MRI scans, using a measurement called the Apparent Diffusion Coefficient (ADC), which records how restricted water movement is within tissues. Changes in this measurement correctly identified treatment response for 24 of 25 myeloma patients.

The new scan was able to visualise cancer in almost all bones in the body, with only the skull remaining difficult to image partly because of the frequency of metal dental implants and fillings. The researchers also found the new methods were suitable for more patients than conventional tests; for example, seven patients had bone marrow biopsies but their samples were found to be inadequate for analysis. Performing another biopsy could be traumatic and painful, and may not provide any new information.

Professor Nandita deSouza, Professor of Translational Imaging at The Institute of Cancer Research and Honorary Consultant at The Royal Marsden, said: "This is the first time we've been able to obtain information from all the bones in the entire body for myeloma in one scan without having to rely on individual bone X-rays. It enables us to measure the involvement of individual bones and follow their response to treatment.

"The results can be visualised immediately; we can look on the screen and see straight away where the cancer is and measure how severe it is. The scan is better than blood tests, which don't tell us in which bones the cancer is located. It also reduces the need for uncomfortable biopsies, which don't reveal the extent or severity of the disease."

Dr Faith Davies, member of the Myeloma Targeted Treatment Team at The Institute of Cancer Research and Honorary Consultant at The Royal Marsden, said: "Myeloma can affect bones anywhere in the body, which is why this study is so important. We've shown that whole body MRI scans can accurately monitor how myeloma patients are responding to treatment, allowing doctors to make more informed decisions. With this new scan, if a treatment isn't working the patient can be moved onto new therapies that might be more effective much more quickly.

"This is a small study, so our next step will be to try out the technology in more patients and refine it. In the future we hope this new tool will help doctors extend the life of more myeloma patients. "

Julia Frater, Cancer Research UK's Senior Cancer Information Nurse, said: "Finding kinder ways to monitor how patients respond to treatment is really important, particularly in the case of myeloma where taking bone marrow samples can be painful. This research demonstrates how an advanced imaging technique could provide a whole-skeleton 'snapshot' to track the response of tumours in individual bones. Finding ways to make treatments gentler and improve the experience for patients is an important focus for Cancer Research UK and the research we fund."

Most Popular Now

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...