European scientists to develop healthcare robot

IWARD targets mainly hospitals and healthcare centres to overcome the shortages of healthcare staff - a major issue in European healthcare. Our aging society and economic pressure increase the patients-to-medics' ratio, having an adverse effect on healthcare quality and performance. Not being able to attend all patients at the right time and not keeping the hospitals clean enough (e.g. MRSA Transmission) also increases recovery time and cost.

To improve the quality of healthcare, these focal issues emerge: fast identification and location of patients needing immediate attention; reduction of human errors; effective cleaning in hospitals; wider reach of specialist medics, possibly attending patients remotely. To achieve this, IWARD presents a robot swarm delivering support to oversee activities in healthcare environments, providing a multipurpose, cost-effective and scalable solution to enhance quality of healthcare.

Four major tasks are: attendance, recognition, communication and support (assisting/cleaning). Attendance means to monitor hospital wards by robots acting as a dynamic swarm. Recognition points out, that the swarm is able to recognize patients or objects needing attention, providing immediate information about the location and needs of the concerned patients. The robots can be equipped with different adaptable hardware components for floor cleaning and delivery of food, linen, medicine etc. All mobile robots are capable of providing patients and visitors with guidance and information. It provides easy to use but high tech interaction interfaces like voice control through mobile and fix-mounted robots.

Each robot will consist of a basic platform mounted with a module of sensors and equipment for different tasks. So for example, a robot could be fitted with a laser thermometer to measure body heat from a distance or cleaning equipment to mop up spills. Another task could be to guide visitors around the hospital.

While the hardware and modules will use off-the-shelf technology, the swarm-based intelligence will require groundbreaking work, as will the software platform to allow the robots to operate semi-autonomously.

"The idea is not only to have mobile robots but also a full system of integrated information terminals and guide-lights, so the hospital is full of interaction and intelligence," said Thomas Schlegel, the project leader from the Fraunhofer Institute.

"Operating as a completely decentralised network means that the robots can co-ordinate things between themselves, such as deciding which one would be best equipped to deal with a spillage or to transport medicine," he continued.

Each robot would be fitted with a suite of sensors, allowing it to move around the hospital, using proximity sensors to avoid collisions and inbuilt cameras to explore its environment. One robot would be able to warn another if its cameras see a collision.

Information could be communicated between the robots by using either a wireless Local Area Network (LAN) or Bluetooth technology or even infrared lasers.

The robots could then communicate with patients and pass messages on to staff.

Dr Schlegel said "IWARD will mean that hospital staff will be able to spend more time with their patients rather than doing other basic tasks."

The project began this month and the team hopes to have developed a three-robot prototype system by 2010.

For further information, please visit IWARD Project Fact Sheet

Copyright ©European Communities, 2007
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

Most Advanced Artificial Touch for Brain…

For the first time ever, a complex sense of touch for individuals living with spinal cord injuries is a step closer to reality. A new study published in Science, paves...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

Using AI to Uncover Hospital Patients�…

Across the United States, no hospital is the same. Equipment, staffing, technical capabilities, and patient populations can all differ. So, while the profiles developed for people with common conditions may...

New AI Tool Uses Routine Blood Tests to …

Doctors around the world may soon have access to a new tool that could better predict whether individual cancer patients will benefit from immune checkpoint inhibitors - a type of...

New Method Tracks the 'Learning Cur…

Introducing Annotatability - a powerful new framework to address a major challenge in biological research by examining how artificial neural networks learn to label genomic data. Genomic datasets often contain...

Picking the Right Doctor? AI could Help

Years ago, as she sat in waiting rooms, Maytal Saar-Tsechansky began to wonder how people chose a good doctor when they had no way of knowing a doctor's track record...

From Text to Structured Information Secu…

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected...

AI Innovation Unlocks Non-Surgical Way t…

Researchers have developed an artificial intelligence (AI) model to detect the spread of metastatic brain cancer using MRI scans, offering insights into patients’ cancer without aggressive surgery. The proof-of-concept study, co-led...

Deep Learning Model Helps Detect Lung Tu…

A new deep learning model shows promise in detecting and segmenting lung tumors, according to a study published in Radiology, a journal of the Radiological Society of North America (RSNA)...

One of the Largest Global Surveys of Soc…

As leaders gather for the World Economic Forum Annual Meeting 2025 in Davos, Leaps by Bayer, the impact investing arm of Bayer, and Boston Consulting Group (BCG) announced the launch...

New Study Reveals AI's Transformati…

Intensive care units (ICUs) face mounting pressure to effectively manage resources while delivering optimal patient care. Groundbreaking research published in the INFORMS journal Information Systems Research highlights how a novel...