Commission grants EUR 2.8 million to cancer camera project

A European consortium has received a EUR 2.8 million grant from the European Commission to develop a camera that can be ingested to obtain images of the digestive tract.

The three year EU funded project entitled "Nano-based capsule endoscopy with Molecular Imaging and Optical Biopsy", or "NEMO", will combine optical imaging with nanotechnologies, biosensing and manoeuvring to create an integrated imaging-biosensing system to screen for cancer of the gastrointestinal (GI) tract.

The objective of the NEMO project is to make cancer screening more patient-friendly through the development of an advanced cancer screening system.

The system will consist of a PillCam capsule endoscope capable of analysing secretions and detecting deep tissue disorders, a datarecorder on a belt that receives signals transmitted by the capsule, and a workstation enabling physicians to view and edit the video of the small intestine images.

The consortium believes that using a combination of image and molecular analysis to find the tumour could provide a new medical device for the mass screening of GI cancer.

"The project is committed to develop new and innovative solutions to help physicians treat their patients and could represent a revolutionary platform of biopsy free procedures," said Elisha Rabinovitz, the chief scientist at Given Imaging, the company leading the consortium.

The European Commission agreed to provide €2.8 million towards the total cost - slightly more than half of the total amount needed. This is because, under the rules of the Commission's Sixth Framework Programme (FP6), commercial companies can claim 50% of their costs, while academic institutions can claim up to 75%.

Meanwhile, the company behind the PillCam capsule has been heralded as one of the World Economic Forum's 2007 Technology Pioneers for its innovative camera the size of a vitamin tablet.

For more information, please visit:
http://www.givenimaging.com/Cultures/en-US/given/english

Copyright ©European Communities, 2007
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...

Shape-Changing Device Helps Visually Imp…

Researchers from Imperial College London, working with the company MakeSense Technology and the charity Bravo Victor, have developed a shape-changing device called Shape that helps people with visual impairment navigate...