Acoustic Imaging with Outline Detection

Reverberated sound can make objects visible. The sonar is used in the shipping industry to acquire information about the seabed or shoals of fish, while gynaecologists use ultrasound images to study foetuses in the womb. Material testing procedures that regularly check for fissures in rail tracks or aircraft support structures are also based on ultrasound.

Researchers at ETH Zurich have now developed a new type of acoustic imaging device which, rather than producing a photorealistic image of an entire object, shows only its contours and edges. "This type of measuring method delivers similar results to the edge detection filter in an image-processing software, which allows the outline of prominent photo objects to be identified with the click of the mouse," explains Chiara Daraio, Professor of Mechanics and Materials. Her method, however, is not software-based. Instead, it extracts the contour information during the acoustic measurement stage.

To understand just how this acoustic edge detector works, it is important to know that sound waves are reflected off edges in a remarkable way: The acoustics near the edges is dominated by so-called evanescent waves. These waves have a much shorter wavelength than the incident sound waves that producte them. As the evanescent waves decay very fast as they propagate they can only be measured in close proximity to the edge. Methods to recover information contained in these waves have been developed in the past; however, the ETH researchers have now devised a new method that intensifies the evanescent waves and differentiates them from larger sound waves that are reflected in the "normal" way.

Resonance structure from a 3D printer
Central to this new method lies a new polymer structure developed and produced on a 3D printer by Miguel Molerón, a postdoc in Daraio's group. The structure is a pipe with a square cross-section, the inside of which is divided into five adjoining resonance chambers connected via small windows. "The resonance achieved by this structure intensifies the evanescent waves, and the successive chambers filter out the longer waves," explains Molerón. At the head of the structure, four microphones measure the transmitted sound.

To create an outline image, the scientists bounced sound with a specific frequency off the object through a loudspeaker. They attached the polymer structure with the microphones to a robot very close to the object's surface, which enabled them to systematically scan the entire surface and generate the outline image from the measured sound data.

Identifying the most relevant aspects quickly
According to the scientists, the new measuring method is most useful when the aim is to record relevant information about the object as quickly as possible rather than obtaining a perfect image. "We have created an acoustic imaging method with which any unnecessary information isn't recorded," says ETH professor Daraio. "Outlines and edges are sufficient to classify objects based on their shape and size, for example, or to identify fissures or defects on the surface of materials," adds postdoc Molerón.

The work conducted by the ETH researchers is currently just a proof of concept. The method still needs to be refined before it can be applied in practice. The scientists used sound at an audible frequency in their study. However, it would also be interesting to adapt the method for ultrasound that has shorter wavelengths. "Because the size of the polymer structure has to be adjusted to the operational wavelength, we need to miniaturise the structure. We now want to find out how far we can go with it," says Molerón. He is aiming to improve the acoustic imaging method for potential use in biological research or medicine.

Molerón M, Daraio C: Acoustic metamaterial for subwavelength edge detection. Nature Communications, 25 August 2015, doi: 10.1038/ncomms9037.

Most Popular Now

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...