Robot with a foot prosthesis

Running shoes, ski bindings and foot prostheses all have one thing in common: They must be tested thoroughly. This is now done by a robot-based 3-D test rig which simulates human movements, thus enabling any kind of load test to be carried out under realistic conditions.

It is one of those single-arm, orange-colored robots normally used to punch and weld sheet metal components for cars in large manufacturing halls. One such industrial robot can also be found in the laboratories of the Fraunhofer Technology Development Group TEG. However, the researchers there have given it much more human qualities. This robot arm can almost perfectly imitate the natural walking movements of a human being, and so, mounted on a treadmill, it walks and walks and walks. The reason for this continuous exertion is a prosthetic foot which is attached to the machine and is being put through its paces.

The TEG researchers have succeeded in developing a 3-D robot test rig that is capable of emulating a variety of different movements. Thanks to this robot, it is now possible to test various components and materials under realistic conditions for the first time. Be it to test the load capacity of a foot prosthesis or even to design new ski bindings or running shoes – the robot is able to exert three-dimensional forces, unlike conventional testing devices, and can turn, push or pull in any direction. "Thanks to bio-mechanical analyses, we understand the rolling movements of the foot," explains TEG project manager Andreas Reindl. "We use this know-how to program the robot. As a result, we can teach it all kinds of movements, just as the customer pleases. We do this by layering individual motion sequences on top of each other." The robot can then, for instance, exert a downward pressure while at the same time performing a forward pulling motion.

Once the robot has learnt to 'walk', the engineers can carry out extensive tests on the prosthesis or running shoe. A set of pressure measuring plates integrated in the treadmill can determine, for instance, how much load pressure the shoe's cushioning material can withstand. Video recordings and optical recognition systems also help to establish which material is best to ensure that the foot prosthesis is flexible enough to roll properly, but also firm enough to provide sufficient stability. This sophisticated robot test rig enables the engineers to test all kinds of materials. It could also be used for fatigue tests on fitness machines or various types of floor coverings. Manufacturers can be as inventive as they like in terms of the test requirements, as there is no limit to what the system can do.

For further information, please visit:
http://www.teg.fraunhofer.de/english/index.html

Most Popular Now

AI may Help Clinicians Personalize Treat…

Individuals with generalized anxiety disorder (GAD), a condition characterized by daily excessive worry lasting at least six months, have a high relapse rate even after receiving treatment. Artificial intelligence (AI)...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

Can AI Help Detect Cognitive Impairment?

Mild cognitive impairment (MCI) can be an early indicator of Alzheimer's disease or dementia, so identifying those with cognitive issues early could lead to interventions and better outcomes. But diagnosing...

AI can Open Up Beds in the ICU

At the height of the COVID-19 pandemic, hospitals frequently ran short of beds in intensive care units. But even earlier, ICUs faced challenges in keeping beds available. With an aging...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

AI Model Predicting Two-Year Risk of Com…

AFib (short for atrial fibrillation), a common heart rhythm disorder in adults, can have disastrous consequences including life-threatening blood clots and stroke if left undetected or untreated. A new study...

Patients' Affinity for AI Messages …

In a Duke Health-led survey, patients who were shown messages written either by artificial intelligence (AI) or human clinicians indicated a preference for responses drafted by AI over a human...

New Research Explores How AI can Build T…

In today’s economy, many workers have transitioned from manual labor toward knowledge work, a move driven primarily by technological advances, and workers in this domain face challenges around managing non-routine...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...