Modeling the Brain with 'Lego Bricks'

Researchers from the University of Luxembourg, in cooperation with the University of Strasbourg, have developed a computational method that could be used to guide surgeons during brain surgery. Surgeons often operate in the dark. They have a limited view of the surface of the organ, and can typically not see what lies hidden inside. Quality images can routinely be taken prior to the surgery, but as soon as the operation begins, the position of the surgeon's target and risky areas he must avoid, continuously change. This forces practitioners to rely on their experience when navigating surgical instruments to, for example, remove a tumor without damaging healthy tissue or cutting through important blood supplies.

Stéphane Bordas, Professor in Computational Mechanics at the Faculty of Science, Technology and Communication of the University of Luxembourg, and his team have developed methods to train surgeons, help them rehearse for such complex operations and guide them during surgery. To do this, the team develops mathematical models and numerical algorithms to predict the deformation of the organ during surgery and provide information on the current position of target and vulnerable areas. With such tools, the practioner could virtually rehearse a particular operation to anticipate potential complications.

As the brain is a composite material, made up of grey matter, white matter and fluids, the researchers use data from medical imaging, such as MRI to decompose the brain into subvolumes, similar to lego blocks. The colour of each lego block depends on which material it represents: white, grey or fluid. This colour-coded "digital lego brain" consists of thousands of these interacting and deforming blocks which are used to compute the deformation of the organ under the action of the surgeon. The more blocks the researchers use to model the brain, the more accurate is the simulation. However, it becomes slower, as it requires more computing power. For the user, it is therefore important to find the right balance between accuracy and speed when he decides how many blocks to use.

The crucial aspect of Prof Bordas' work is that it allows, for the first time, to control both the accuracy and the computational time of the simulations. "We developed a method that can save time and money to the user by telling them the minimum size these lego blocks should have to guarantee a given accuracy level. For instance, we can say with certainty: if you can accept a ten per cent error range then your lego blocks should be maximum 1mm, if you are ok with twenty percent you could use 5mm elements," he explains. "The method has two advantages: You have an estimation of the quality and you can focus the computational effort only on areas where it is needed, thus saving precious computational time."

Over time, the researchers' goal is to provide surgeons with a solution that can be used during operations, constantly updating the simulation model in real time with data from the patient. But, according to Prof Bordas, it will take a while before this is realized. "We still need to develop robust methods to estimate the mechanical behavior of each lego block representing the brain. We also must develop a user-friendly platform that surgeons can test and tell us if our tool is helpful," he said.

Bui HP, Tomar S, Courtecuisse H, Cotin S, Bordas S.
Real-time Error Control for Surgical Simulation.
IEEE Transactions on Biomedical Engineering, vol.PP, no.99, pp.1-1, doi: 10.1109/TBME.2017.2695587.

Most Popular Now

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...

AI Analysis of PET/CT Images can Predict…

Dr. Watanabe and his teams from Niigata University have revealed that PET/CT image analysis using artificial intelligence (AI) can predict the occurrence of interstitial lung disease, known as a serious...