Using Social Media Big Data to Combat Prescription Drug Crisis

Researchers at Dartmouth, Stanford University, and IBM Research, conducted a critical review of existing literature to determine whether social media big data can be used to understand communication and behavioral patterns related to prescription drug abuse. Their study found that with proper research methods and attention to privacy and ethical issues, social media big data can reveal important information concerning drug abuse, such as user-reported side effects, drug cravings, emotional states, and risky behaviors.

Their work, "Scaling Up Prescription Drug Abuse and Addiction Research Through Social Media Big Data," is reported in the Journal of Medical Internet Research .

Prescription drug addiction is a well-known nationwide problem. Many people who are unable to get help for their addiction seek out peer support groups on Facebook or other social media platforms to share stories about their experiences and also provide social peer-based support.

Lead author, Sunny Jung Kim, PhD, an e-health communication scholar in the departments of biomedical data science and psychiatry at Dartmouth's Geisel School of Medicine, says that because we are prolific consumers of social media, which is not limited to geography - globally, people spend more than two hours every day on social media platforms generating vast amounts of big data about our personal communications and activities - we can use these platforms to enhance public health communication strategies to help people on a large scale.

"Harnessing social media platforms and data can provide insight into important novel discoveries of collective public health risk behavior, a better understanding of peoples' struggles with addiction, and their process of recovery," Kim says. "I started this project because there were few studies about why people use social networking sites to share unsolicited, highly personal information about their drug use, nor about the psychological effects or consequences of this type of user-generated communication."

Co-author Jeffrey Hancock, PhD, a professor in the department of communication and the director of computational social science at Stanford University, says, "Given the importance of this problem for the U.S. population, it's imperative that we understand how social media is playing a role and how it can be part of the solution."

Based on their findings, the researchers designed an evidence-based, multi-level framework to inform future social media-based substance use prevention and recovery intervention programs.

"Our review and typology suggests that social media big data and platforms can be a tremendous resource for monitoring and intervening on behalf of people with drug addiction and abuse problems," Kim says.

Kim SJ, Marsch LA, Hancock JT, Das AK.
Scaling Up Research on Drug Abuse and Addiction Through Social Media Big Data.
J Med Internet Res 2017;19(10):e353. doi: 10.2196/jmir.6426.

Most Popular Now

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...

AI Analysis of PET/CT Images can Predict…

Dr. Watanabe and his teams from Niigata University have revealed that PET/CT image analysis using artificial intelligence (AI) can predict the occurrence of interstitial lung disease, known as a serious...