Machines See the Future for Patients Diagnosed with Brain Tumors

For patients diagnosed with glioma, a deadly form of brain tumor, the future can be very uncertain. While gliomas are often fatal within two years of diagnosis, some patients can survive for 10 years or more. Predicting the course of a patient's disease at diagnosis is critical in selecting the right therapy and in helping patients and their families to plan their lives.

Researchers at Emory and Northwestern Universities recently developed artificial intelligence (AI) software that can predict the survival of patients diagnosed with glioma by examining data from tissue biopsies. The approach, described in Proceedings of the National Academy of Sciences, is more accurate than the predictions of doctors who undergo years of highly-specialized training for the same purpose.

Doctors currently use a combination of genomic tests and microscopic examination of tissues to predict how a patient's disease will behave clinically or respond to therapy. While genomic testing is reliable, these tests do not completely explain patient outcomes, and so microscopic examination is used to further refine prognosis. Microscopic examination, however, is very subjective, with different pathologists often providing different interpretations of the same case. These interpretations can impact critical decisions like whether a patient enrolls in an experimental clinical trial or receives radiation therapy as part of their treatment.

"Genomics have significantly improved how we diagnose and treat gliomas, but microscopic examination remains subjective. There are large opportunities for more systematic and clinically meaningful data extraction using computational approaches," says Daniel J. Brat, MD, PhD, the lead neuropathologist on the study, who began developing the software while at Emory University and the Winship Cancer Institute. Brat currently is chair of pathology at Northwestern University Feinberg School of Medicine.

The researchers used an approach called deep-learning to train the software to learn visual patterns associated with patient survival using microscopic images of brain tumor tissue samples. The breakthrough resulted from combining this advanced technology with more conventional methods that statisticians use to analyze patient outcomes. When the software was trained using both images and genomic data, its predictions of how long patients survive beyond diagnosis were more accurate than those of human pathologists. The study used public data produced by the National Cancer Institute's Cancer Genome Atlas project to develop and evaluate the algorithm.

"The eventual goal is to use this software to provide doctors with more accurate and consistent information. We want to identify patients where treatment can extend life," says Lee A.D. Cooper, PhD, the study's lead author, a professor of biomedical informatics at Emory University School of Medicine and member of the Winship Cancer Institute. "What the pathologists do with a microscope is amazing. That an algorithm can learn a complex skill like this was an unexpected result. This is more evidence that AI will have a profound impact in medicine, and we may experience this sooner than expected."

The researchers also demonstrated that the software learns to recognize many of the same structures and patterns in the tissues that pathologists use when performing their examinations. "Validation remains a barrier to using these algorithms in patient care. Being able to explain why an algorithm works is an important step towards clinical implementation."

The researchers are looking forward to future studies to evaluate whether the software can be used to improve outcomes for newly diagnosed patients.

Pooya Mobadersany, Safoora Yousefi, Mohamed Amgad, David A Gutman, Jill S Barnholtz-Sloan, José E Velázquez Vega, Daniel J Brat, Lee AD Cooper.
Predicting cancer outcomes from histology and genomics using convolutional networks.
PNAS March 12, 2018. 201717139. doi: 10.1073/pnas.1717139115.

Most Popular Now

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...