Researchers Apply Computing Power to Track the Spread of Cancer

Princeton researchers have developed a new computational method that increases the ability to track the spread of cancer cells from one part of the body to another. This migration of cells can lead to metastatic disease, which causes about 90 percent of cancer deaths from solid tumors - masses of cells that grow in organs such as the breast, prostate or colon. Understanding the drivers of metastasis could lead to new treatments aimed at blocking the process of cancer spreading through the body.

"Are there specific changes, or mutations, within these cells that allow them to migrate?" asked Ben Raphael, a professor of computer science at Princeton and the senior author of the new research. "This has been one of the big mysteries."

In a study published in the May issue of Nature Genetics, Raphael and his colleagues presented an algorithm that can track cancer metastasis by integrating DNA sequence data with information on where cells are located in the body. They call it MACHINA, which stands for "metastatic and clonal history integrative analysis."

"Our algorithm enables researchers to infer the past process of metastasis from DNA sequence data obtained at the present time," said Raphael.

The technique yields a clearer picture of cancer migration histories than previous studies that relied on methods based on DNA sequences alone. Some of these studies inferred complex migration patterns that didn't reflect current knowledge of cancer biology.

"The data sets we get these days are very complex, but complex data sets don't always require complex explanations," said Raphael.

By simultaneously tracing cells' mutations and movements, MACHINA found that metastatic disease in some patients could result from fewer cellular migrations than previously thought. For example, in one breast cancer patient, a previously published analysis proposed that metastatic disease resulted from 14 separate migration events, while MACHINA suggested that a single secondary tumor in the lung seeded the remaining metastases through just five cell migrations. In addition to a breast cancer data set, Raphael and his team applied their algorithm to analyze metastasis patterns from patients with melanoma, ovarian and prostate cancers.

Several additional features helped improve MACHINA's accuracy. The algorithm includes a model for the comigration of genetically different cells, based on experimental evidence that tumor cells can travel in clusters to new sites in the body. It also accounts for the uncertainty in DNA data that comes from sequencing mixtures of genetically distinct tumor cells and healthy cells.

This approach overcomes a number of challenges to draw meaningful conclusions from the "difficult to analyze, noisy" data that result from tumor DNA sequencing, said Andrea Sottoriva, the Chris Rokos Fellow in Evolution and Cancer at The Institute of Cancer Research, London. "I predict this new method will be of widespread use to the genomic community and will shed new light on the most deadly phase of cancer evolution," he said.

MACHINA's development paves the way for a broader examination of metastasis patterns in large cohorts of cancer patients, which could reveal key mutations that cause different types of cancer to spread.

Raphael also plans to make the method more powerful by incorporating data from tumor DNA and tumor cells that circulate in the bloodstream, as well as epigenetic changes - reversible chemical modifications of DNA.

"A better algorithm is like a better microscope," said Raphael. "When you look at nature with a magnifying glass, you may miss important details. If you look with a microscope you can see much more."

El-Kebir M, Satas G, Raphael BJ.
Inferring parsimonious migration histories for metastatic cancers.
Nat Genet. 2018 May;50(5):718-726. doi: 10.1038/s41588-018-0106-z.

Most Popular Now

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...