Researchers Use AI to Successfully Treat Metastatic Cancer Patient

A translational research team led by the National University of Singapore (NUS) has harnessed CURATE.AI, a powerful artificial intelligence (AI) platform, to successfully treat a patient with advanced cancer, completely halting disease progression. This new development represents a big step forward in personalised medicine.

In this clinical study, a patient with metastatic castration-resistant prostate cancer (MCRPC) was given a novel drug combination consisting of investigational drug ZEN-3694 and enzalutamide, an approved prostate cancer drug. The research team successfully utilised CURATE.AI to continuously identify the optimal doses of each drug to result in a durable response, allowing the patient to resume a completely normal and active lifestyle.

"Dynamic dosing in cancer therapy is not commonly used. In fact, drug dosing changes in oncology are typically performed only to reduce toxicity. CURATE.AI uniquely modifies drug dosing to increase efficacy. Our clinical study has shown that dosing can profoundly affect the efficacy and safety of treatment. A patient's clinical profile changes over time. The unique ability for CURATE.AI to rapidly identify the drug doses that result in the best possible treatment outcomes allows for actionable, and perpetually optimised personalised medicine," explained Professor Dean Ho, Director of the Singapore Institute for Neurotechnology (SINAPSE) at NUS, who led the study.

Combating cancer with combination therapy

Combination therapy represents a cornerstone in modern cancer treatment. Using this approach, multiple drugs are used to attack the processes that support cancer growth. A primary objective when designing combination therapies is to achieve drug synergy, where the drugs work together to substantially improve efficacy.

While combination therapy has generally improved treatment outcomes such as overall survival for many cancers, it is predominantly given at both fixed as well as high doses.

Prof Ho added, "Patients respond to chemotherapy differently from one another. Even a single patient's response to therapy can vary substantially over the course of treatment. In fact, many patients do not respond at all to the drug combination because the dosages, which can profoundly impact efficacy, are not suitable for them. Therefore, while fixed dose combination therapy represents a standard of care, it may also serve as a barrier to realising truly optimal and personalised medicine."

Harnessing AI to continuously optimise combination therapy dosing

To overcome the challenges of conventional combination therapy, the NUS team of engineers developed the CURATE.AI platform, which uses the patient's own clinical data - such as their drug doses and corresponding changes to tumour sizes or levels of cancer biomarkers in the blood - to calibrate his or her unique response to treatment. This calibration is then used to create an individualised CURATE.AI profile, or map, that identifies the drug doses which enable the best possible treatment outcome at any given point in time.

"No two patients' profiles are alike, and as a patient's body and the cancer itself evolve during treatment, the CURATE.AI profile evolves as well, enabling the clinical and engineering teams to optimise care for the entire duration of treatment, an unprecedented advance for combination therapy," Prof Ho explained.

In this study, which was conducted at the UCLA Institute of Urologic Oncology for a period of over a year, a patient with metastatic prostate cancer was given ZEN-3694 and enzalutamide. Reducing the level of prostate specific antigen (PSA) in the patient's blood served as the primary biomarker to determine if the patient was responding to treatment. Computed tomography (CT) imaging of the cancer lesions monitored the extent of disease progression.

Initially, the doses of ZEN-3694 and enzalutamide were adjusted by the clinicians to better manage patient-reported quality of life. The patient's initial drug doses and PSA levels were then used to construct his personalised CURATE.AI profile. Remarkably, CURATE.AI subsequently identified a ZEN-3694 dose that was 50 per cent lower than the patient's starting dose of the drug prior to CURATE.AI analysis. Prospective dosage guidance by CURATE.AI resulted in the lowest PSA levels observed for the patient during the course of the study. As treatment progressed, slight increases in ZEN-3694 dosing resulted in clear decreases in PSA levels, also demonstrating its key role in suppressing the metastatic cancer. CT imaging of the patient's lesions showed that disease progression was halted as a result of CURATE.AI-guided combination therapy of both ZEN-3694 and enzalutamide. Patient care guided by CURATE.AI is currently ongoing.

"Using CURATE.AI to dynamically modify drug doses and successfully treat a metastatic cancer patient represents a landmark breakthrough for the use of AI to truly personalise patient care. This advance is expected to dramatically improve response rates for all combination therapies that are being developed for oncology as well as virtually all other diseases. We can also expect CURATE.AI to markedly reduce the costs of drug development," Prof Ho added.

Dr Allan Pantuck, the lead clinician of the study, added, "With fixed dose therapy, patients are often switched to other drugs when they no longer respond to treatment. However, CURATE.AI has shown that patients can still respond to the therapies that have seemingly stopped working by continuously identifying the patient's optimal dosing parameters."

"The implementation of CURATE.AI represents a game-changing shift in the way that combination therapy can be optimised at the single patient level, and we have shown that N-of-1 medicine can be a reality. We are excited that CURATE.AI could ultimately enhance patient accessibility to important new combination therapies, saving lives in the process," said Prof Ho, who is also from the Biomedical Engineering and Pharmacology departments at NUS, as well as a member of the Biomedical Institute for Global Health Research and Technology (BIGHEART) at NUS.

The research was conducted in collaboration with the University of California, Los Angeles, and Zenith Epigenetics. The findings were published in Advanced Therapeutics on 29 August 2018.

More clinical trials underway

CURATE.AI is applicable to all diseases and all patients, and a first generation of the platform was previously validated in the clinic for single drug optimisation in post-transplant immunosuppression. This new study demonstrates that CURATE.AI can optimise multi-drug regimens.

Multiple clinical trials using CURATE.AI-guided combination therapy for oncology and additional applications such as post-transplant immunosuppression are underway. In addition, patient recruitment for additional oncology trials in Singapore has been approved.

The CURATE.AI team expects to broadly deploy the platform for the prevention of transplant rejection, adult and paediatric cancers, cardiovascular medicine, diabetes management, infectious diseases, and many other applications.

Allan J Pantuck, Dong‐Keun Lee, Theodore Kee, Peter Wang, Sanjay Lakhotia, Michael H Silverman, Colleen Mathis, Alexandra Drakaki, Arie S Belldegrun, Chih‐Ming Ho, Dean Ho.
Modulating BET Bromodomain Inhibitor ZEN‐3694 and Enzalutamide Combination Dosing in a Metastatic Prostate Cancer Patient Using CURATE.AI, an Artificial Intelligence Platform.
Advanced Therapeutics. doi: 10.1002/adtp.201800104.

Most Popular Now

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...