Noninvasive Brain Stimulation may Soon Reach More Aphasia Patients

Sometimes in research, a smaller finding can open the door to big possibilities. Neuroscientists at the University of South Carolina (USC) and the Medical University of South Carolina (MUSC) have collaborated on a study in the field of aphasia that has successfully paved the way for a large clinical trial. Their work, published online by the Journal of the American Medical Association Neurology, tests whether transcranial direct current stimulation (tDCS) can help patients with stroke-related aphasia recover their use of language.

The clinical trial was led by USC researchers Julius Fridriksson, Ph.D., director of the Center for the Study of Aphasia Recovery, and Chris Rorden, Ph.D. and MUSC researchers Mark S. George, M.D., director of the MUSC Magnetic Brain Stimulation Laboratory, and Leonardo Bonilha, M.D., Ph.D., an associate professor in the MUSC Department of Neurology and director of MUSC's aphasia clinic. George and Bonilha perform research to understand and treat neurological disorders such as aphasia. Together, the researchers at MUSC and USC formed a team to investigate whether tDCS could help stroke patients suffering from aphasia. The work was supported by the National Institute on Deafness and Other Communication Disorders.

"At 6 months following treatment completion, the response to the aphasia treatment was more than doubled for the patients who received electrical stimulation compared to those who received the placebo stimulation," said Fridriksson. "If this effect is supported by future research, it could mean a major change in how rehabilitation of stroke is administered."

About a third of stroke patients lose some of their ability to use language to communicate. This happens when stroke affects networks in the brain that allow us to assign words to thoughts and images or that direct the muscles needed to speak. Aphasia is typically treated with speech therapy that is designed to salvage parts of those networks that remain intact. In speech therapy, a patient is shown pictures of common objects and asked to speak the words that describe them. These naming exercises are used to strengthen a stroke patient's ability to recall and form words. Although such exercises are proven to help some patients recover some ability to use language, the treatment is not successful in all patients. Recovery can be especially difficult in patients with long-term aphasia lasting 6 months or longer after stroke.

tDCS is a form of brain stimulation that is thought to guide electrical activity in parts of the brain. It is not clear exactly how it works, but researchers think it helps improve brain activity in language networks in the brain cortex. tDCS is non-invasive and is applied through electrodes attached to the scalp. Participants usually feel a brief itchy or tingly sensation but do not report any negative symptoms. The treatment is being tested in a number of different conditions that affect the brain, including depression and Alzheimer's disease.

The researchers at USC and MUSC questioned whether tDCS could boost scores on naming exercises in stroke patients with long-term aphasia. They used a unique method to test their idea. Instead of looking for proof that the new treatment was effective, they looked for any evidence that it was not effective. This method is thought to be scientifically stronger, because it prevents researchers from ignoring any evidence that a new treatment might work.

In the phase 2 trial, 74 stroke patients with aphasia lasting at least six months were given functional magnetic resonance imaging (fMRI) scans of their brains during naming tests. The fMRI images showed which areas of the brain were activated when a patient was asked to name familiar objects. Then the tDCS electrodes were positioned over those activated areas of the brain. The researchers suspected that stimulating such areas of the brain with tDCS could further strengthen activity in those areas. This kind of enhanced activity might help patients correctly name objects during the speech therapy. Some patients were given 20-minute sessions of tDCS, while others were given sham tDCS, in which electrical current was applied for only 30 seconds to induce the familiar tingling sensation on the scalp. Patients in both groups received three weeks of standard speech therapy, during which their scores on naming tests were recorded.

The scientists were pleasantly surprised to find that patients treated with tDCS were able to name nearly 14 objects, while those in the sham group could name only 8, on average. The door had been opened to try the new treatment in a larger number of patients. Bonilha explained why it was important to look for any evidence that the treatment did not work.

"For this to be used in a routine clinical setting, there needs to be a definitive trial in the future," said Bonilha. "This study showed that doing a larger trial wouldn't be a waste of time, because there seems to be a pretty good indication that tDCS is promising. We are in the process of planning and designing the next study."

This study showed that tDCS coupled with speech therapy is a promising new treatment for aphasia patients who have few options. "For many individuals who have long-standing language deficits, just a few more words can have a significant impact," said Bonilha.

Julius Fridriksson, Chris Rorden, Jordan Elm, Souvik Sen, Mark S George, Leonardo Bonilha. Transcranial Direct Current Stimulation vs Sham Stimulation to Treat Aphasia After Stroke. A Randomized Clinical Trial. JAMA Neurol. Published online August 20, 2018. doi: 10.1001/jamaneurol.2018.2287.

Most Popular Now

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...