New Antibiotics Are Desperately Needed: Machine Learning could Help

As the threat of antibiotic resistance looms, microbiologists aren’t the only ones thinking up new solutions. James Zou, PhD, assistant professor of biomedical data science at Stanford, has applied machine learning to create an algorithm that generates thousands of entirely new virtual DNA sequences with the intent of one day creating antimicrobial proteins.

The algorithm, called Feedback GAN, essentially acts as a mass producer of different DNA snippets. And while these sequence attempts are somewhat random, the algorithm isn't working blindly. It’s basing the new possible peptides, or small groups of amino acids, on previous research that lays out the DNA sequences most likely to align with antimicrobial properties.

For now, these templates, which don't exist in nature, are theoretical, generated on a computer. But in the face of rising concerns about microbe resistance, Zou said it's critical to think about solutions that don't already exist.

"We chose to pursue antimicrobial proteins because it's a very important, high-impact problem that's also a relatively tractable problem for the algorithm," Zou said. "There are existing tools that we incorporate into our system that evaluate if a new sequence is likely to have the properties of a successful antimicrobial protein."

Feedback GAN builds on that, working to incorporate just the right balance of random chance and precision.

A paper describing the algorithm was published online Feb. 11 in Nature Machine Learning. Anvita Gupta, a student in computer science, is the first author; Zou is the senior author.

Self-refining

Gupta and Zou's algorithm doesn't just churn out new combinations of DNA. It also actively refines itself, learning what works and what doesn’t through a feedback loop: After the algorithm spits out a wide range of DNA sequences, it runs a trial-and-error learning process that sifts through the peptide suggestions. Based on their resemblance to other known antimicrobial peptides, the “good” ones get fed back into the algorithm to inform future DNA sequences generated from the code, and to get refined themselves.

"There's a built-in arbiter and, by having this feedback loop, the system learns to model newly generated sequences after those that are deemed likely to have antimicrobial properties," Zou said. "So the idea is both individual peptide sequences and the generation of the sequences get better and better."

Zou has also considered another core component of hypothetical proteins: protein folding. Proteins contort into very specific structures linked to their functions. An algorithm could create the perfect sequence, but unless it can fold up, it's useless - like the cogs of a clock strewn on a table.

Zou can tweak the algorithm so that instead of analyzing a propensity for antimicrobial properties, it determines the likelihood of correct folding.

"We can actually do these two things in parallel where we look at antimicrobial properties of one sequence and folding likelihood of another," said Zou. "We run both so that we’re optimizing either the antimicrobial properties or its ability to fold."

Next, Zou hopes to merge the two variations of the algorithm to create peptide sequences that are optimized for both their microbe-killing abilities and their ability to fold into a genuine protein.

Demo, instructions and code for FBGAN are available at https://github.com/av1659/fbgan.

Anvita Gupta, James Zou.
Feedback GAN for DNA optimizes protein functions.
Nature Machine Intelligence, 1, 105-111 (2019). doi: 10.1038/s42256-019-0017-4.

Most Popular Now

MEDICA 2024 + COMPAMED 2024: Adapted Hal…

11 - 14 November 2024, Düsseldorf, Germany. The final preparations for MEDICA 2024 and COMPAMED 2024 in Düsseldorf have begun. A total of more than 5,500 exhibitors from approximately 70 countries...

AI does Not Necessarily Lead to more Eff…

The use of artificial intelligence (AI) in hospitals and patient care is steadily increasing. Especially in specialist areas with a high proportion of imaging, such as radiology, AI has long...

Commission Joins Forces with Venture Cap…

The Commission has launched a Trusted Investors Network bringing together a group of investors ready to co-invest in innovative deep-tech companies in Europe together with the EU. The Union's investment...

An AI-Powered Pipeline for Personalized …

Ludwig Cancer Research scientists have developed a full, start-to-finish computational pipeline that integrates multiple molecular and genetic analyses of tumors and the specific molecular targets of T cells and harnesses...

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

AI could Transform How Hospitals Produce…

A pilot study led by researchers at University of California San Diego School of Medicine found that advanced artificial intelligence (AI) could potentially lead to easier, faster and more efficient...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...