Successful First Trial for Dizziness Monitoring Device

A ground-breaking device to help patients with dizziness problems has moved a step forward following a successful research study. Researchers from UEA and the Norfolk and Norwich University Hospital (NNUH) have published the results of the biggest collection of continuous eye movement data after testing the effectiveness of a wearable diagnostic headset.

The Continuous Ambulatory Vestibular Assessment (CAVA) aims to speed up the diagnosis of the most common causes of dizziness.

A study into the accuracy, reliability and safety of the novel new device, published in the journal Scientific Reports, found the technology to be 99 per cent accurate at detecting eye flicker (nystagmus).

In the trial, the CAVA device was worn by 17 participants, who did not have dizziness problems, for up to 30 days and captured 9,000 hours of eye and head movement data, totalling 405 days of data.

The CAVA device has been designed to be lightweight, durable and can be worn day and night to monitor head and eye movements to help evaluate dizziness attacks outside of a hospital setting.

Prof Stephen Cox and Dr Jacob Newman, from UEA's School of Computing Sciences, developed algorithms to identify seconds of nystagmus from weeks of data recorded by the device.

Principal Investigator John Phillips, who is a Consultant Ear, Nose and Throat Surgeon at NNUH, said the first phase of trialling the device had involved inducing eye flicker on healthy patients.

"Following years of development, I'm delighted that this project was successful in identifying short periods of visually induced nystagmus with a high degree of accuracy," he said.

"The success of this trial has proven the potential of this to fulfil a clinical need and establishing a new field of medicine, vestibular telemetry. These results have provided a good foundation from which to conduct a further study intended to evaluate the system's diagnostic accuracy among patients with dizziness problems."

Dr Jacob Newman, from UEA's School of Computing Sciences, said: "We are very pleased that our algorithms have been able to detect such small incidences of nystagmus within such a large dataset, this bodes well for future work that considers nystagmus in individuals experiencing dizziness."

The study was funded by the Medical Research Council.

John S. Phillips, Jacob L Newman, Stephen J Cox.
An investigation into the diagnostic accuracy, reliability, acceptability and safety of a novel device for Continuous Ambulatory Vestibular Assessment (CAVA).
Scientific Reportsvolume 9, Article number: 10452 (2019). doi: 10.1038/s41598-019-46970-7.

Most Popular Now

MEDICA 2024 + COMPAMED 2024: Adapted Hal…

11 - 14 November 2024, Düsseldorf, Germany. The final preparations for MEDICA 2024 and COMPAMED 2024 in Düsseldorf have begun. A total of more than 5,500 exhibitors from approximately 70 countries...

AI does Not Necessarily Lead to more Eff…

The use of artificial intelligence (AI) in hospitals and patient care is steadily increasing. Especially in specialist areas with a high proportion of imaging, such as radiology, AI has long...

Commission Joins Forces with Venture Cap…

The Commission has launched a Trusted Investors Network bringing together a group of investors ready to co-invest in innovative deep-tech companies in Europe together with the EU. The Union's investment...

Why the NHS is Seeking to Make Media Ser…

Opinion Article by Dean Moody, Healthcare Services Director, Airwave Healthcare. Tim Kelsey and Martha Lane Fox called for WiFi to be made available free of charge throughout the NHS back in...

An AI-Powered Pipeline for Personalized …

Ludwig Cancer Research scientists have developed a full, start-to-finish computational pipeline that integrates multiple molecular and genetic analyses of tumors and the specific molecular targets of T cells and harnesses...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

AI could Transform How Hospitals Produce…

A pilot study led by researchers at University of California San Diego School of Medicine found that advanced artificial intelligence (AI) could potentially lead to easier, faster and more efficient...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

Great Start for Ideas and Innovations: D…

8 - 10 April 2025, Berlin, Germany. From 15 October to 15 November 2024, the DMEA invites experts from business, science, politics and practice to actively participate in shaping the congress...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...