MRI Predict Intelligence Levels in Children?

A group of researchers from the Skoltech Center for Computational and Data-Intensive Science and Engineering (CDISE) took 4th place in the international MRI-based adolescent intelligence prediction competition. For the first time ever, the Skoltech scientists used ensemble methods based on deep learning 3D networks to deal with this challenging prediction task. The results of their study were published in the journal Adolescent Brain Cognitive Development Neurocognitive Prediction.

In 2013, the US National Institutes of Health (NIH) launched the first grand-scale study of its kind in adolescent brain research, Adolescent Brain Cognitive Development (ABCD, https://abcdstudy.org/), to see if and how teenagers' hobbies and habits affect their further brain development.

Magnetic Resonance Imaging (MRI) is a common technique used to obtain images of human internal organs and tissues. Scientists wondered whether the intelligence level can be predicted from an MRI brain image. The NIH database contains a total of over 11,000 structural and functional MRI images of children aged 9-10.

NIH scientists launched an international competition, making the enormous NIH database available to a broad community for the first time ever. The participants were given a task of building a predictive model based on brain images. As part of the competition, the Skoltech team applied neural networks for MRI image processing. To do this, they built a network architecture enabling several mathematical models to be applied to the same data in order to increase the prediction accuracy, and used a novel ensemble method to analyze the MRI data.

In their recent study, Skoltech researchers focused on predicting the intelligence level, or the so called "fluid intelligence", which characterizes the biological abilities of the nervous system and has little to do with acquired knowledge or skills. Importantly, they made predictions for both the fluid intelligence level and the target variable independent from age, gender, brain size or MRI scanner used.

"Our team develops deep learning methods for computer vision tasks in MRI data analysis, amongst other things. In this study, we applied ensembles of classifiers to 3D of super precision neural networks: with this approach, one can classify an image as it is, without first reducing its dimension and, therefore, without losing valuable information," explains CDISE PhD student, Ekaterina Kondratyeva.

The results of the study helped find the correlation between the child's "fluid intelligence" and brain anatomy. Although the prediction accuracy is less than perfect, the models produced during this competition will help shed light on various aspects of cognitive, social, emotional and physical development of adolescents. This line of research will definitely continue to expand.

The Skoltech team was invited to present their new method at one of the world's most prestigious medical imaging conferences, MICCAI 2019, in Shenzhen, China.

Marina Pominova, Anna Kuzina, Ekaterina Kondrateva, Svetlana Sushchinskaya, Evgeny Burnaev, Vyacheslav Yarkin, Maxim Sharaev.
Ensemble of 3D CNN Regressors with Data Fusion for Fluid Intelligence Prediction.
ABCD-NP 2019. Lecture Notes in Computer Science, vol 11791, 2019. doi: 10.1007/978-3-030-31901-4_19.

Most Popular Now

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...