AI Has Helped to Better Understand How Human Brain Performs Face Recognition

Scientists from Salk Institute (USA), Skoltech (Russia), and Riken Center for Brain Science (Japan) investigated a theoretical model of how populations of neurons in the visual cortex of the brain may recognize and process faces and their different expressions and how they are organized. The research was recently published in Neural Computation and highlighted on its cover.

Humans have amazing abilities to recognize a huge number of individual faces and interpret facial expressions extremely well. These abilities play a key role in human social interactions. However, how the human brain processes and stores such complex visual information is still poorly understood.

Skoltech scientists Anh-Huy Phan and Andrzej Cichocki, with their colleagues from the US and Japan, Sidney Lehky and Keiji Tanaka, decided to better understand how the visual cortex processes and stores information related to face recognition. Their approach was based on the idea that a human face can be conceptually represented as a collection of parts or components, including eyes, eyebrow, nose, mouth, etc. Using a machine learning approach, they applied a novel tensor algorithm to decompose faces into a set of components or images called tensorfaces as well as their associated weights, and represented faces by linear combinations of those components. In this way, they build a mathematical model describing the work of the neurons involved in face recognition.

"We used novel tensor decompositions to represent faces as a set of components with specified complexity, which can be interpreted as model face cells and indicate that human face representations consist of a mixture of low- and medium-complexity face cells," said Skoltech Professor Andrzej Cichocki.

Sidney R Lehky, Anh Huy Phan, Andrzej Cichocki, Keiji Tanaka.
Face Representations via Tensorfaces of Various Complexities.
Neural Computation, Volume 32, Issue 2, 2020. doi: 10.1162/neco_a_01258.

Most Popular Now

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...