Electronic Skin Fully Powered by Sweat can Monitor Health

One of the ways we experience the world around us is through our skin. From sensing temperature and pressure to pleasure or pain, the many nerve endings in our skin tell us a great deal.

Our skin can also tell the outside world a great deal about us as well. Moms press their hands against our foreheads to see if we have a fever. A date might see a blush rising on our cheeks during an intimate conversation. People at the gym might infer you are having a good workout from the beads of sweat on you.

But Caltech's Wei Gao, assistant professor in the Andrew and Peggy Cherng department of Medical Engineering wants to learn even more about you from your skin, and to that end, he has developed an electronic skin, or e-skin, that is applied directly on top of your real skin. The e-skin, made from soft, flexible rubber, can be embedded with sensors that monitor information like heart rate, body temperature, levels of blood sugar and metabolic byproducts that are indicators of health, and even the nerve signals that control our muscles. It does so without the need for a battery, as it runs solely on biofuel cells powered by one of the body's own waste products.

"One of the major challenges with these kinds of wearable devices is on the power side," says Gao. "Many people are using batteries, but that's not very sustainable. Some people have tried using solar cells or harvesting the power of human motion, but we wanted to know, 'Can we get sufficient energy from sweat to power the wearables?' and the answer is yes."

Gao explains that human sweat contains very high levels of the chemical lactate, a compound generated as a by-product of normal metabolic processes, especially by muscles during exercise. The fuel cells built into the e-skin absorb that lactate and combine it with oxygen from the atmosphere, generating water and pyruvate, another by-product of metabolism. As they operate, the biofuel cells generate enough electricity to power sensors and a Bluetooth device similar to the one that connects your phone to your car stereo, allowing the e-skin to transmit readings from its sensors wirelessly.

"While near-field communication is a common approach for many battery-free e-skin systems, it could be only used for power transfer and data readout over a very short distance," Gao says. "Bluetooth communication consumes higher power but is a more attractive approach with extended connectivity for practical medical and robotic applications."

Devising a power source that could run on sweat was not the only challenge in creating the e-skin, Gao says; it also needed to last a long time with high power intensity with minimal degradation. The biofuel cells are made from carbon nanotubes impregnated with a platinum/cobalt catalyst and composite mesh holding an enzyme that breaks down lactate. They can generate continuous, stable power output (as high as several milliwatts per square centimeter) over multiple days in human sweat.

Gao says the plan is to develop a variety of sensors that can be embedded in the e-skin so it can be used for multiple purposes.

"We want this system to be a platform," he says. "In addition to being a wearable biosensor, this can be a human-machine interface. The vital signs and molecular information collected using this platform could be used to design and optimize next-generation prosthetics."

You Yu, Joanna Nassar, Changhao Xu, Jihong Min, Yiran Yang, Adam Dai, Rohan Doshi, Adrian Huang, Yu Song, Rachel Gehlhar, Aaron D Ames, Wei Gao.
Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces.
Science Robotics, 2020. doi: 10.1126/scirobotics.aaz7946

Most Popular Now

MEDICA 2024 + COMPAMED 2024: Adapted Hal…

11 - 14 November 2024, Düsseldorf, Germany. The final preparations for MEDICA 2024 and COMPAMED 2024 in Düsseldorf have begun. A total of more than 5,500 exhibitors from approximately 70 countries...

AI does Not Necessarily Lead to more Eff…

The use of artificial intelligence (AI) in hospitals and patient care is steadily increasing. Especially in specialist areas with a high proportion of imaging, such as radiology, AI has long...

Commission Joins Forces with Venture Cap…

The Commission has launched a Trusted Investors Network bringing together a group of investors ready to co-invest in innovative deep-tech companies in Europe together with the EU. The Union's investment...

Why the NHS is Seeking to Make Media Ser…

Opinion Article by Dean Moody, Healthcare Services Director, Airwave Healthcare. Tim Kelsey and Martha Lane Fox called for WiFi to be made available free of charge throughout the NHS back in...

An AI-Powered Pipeline for Personalized …

Ludwig Cancer Research scientists have developed a full, start-to-finish computational pipeline that integrates multiple molecular and genetic analyses of tumors and the specific molecular targets of T cells and harnesses...

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

AI could Transform How Hospitals Produce…

A pilot study led by researchers at University of California San Diego School of Medicine found that advanced artificial intelligence (AI) could potentially lead to easier, faster and more efficient...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...