Supercomputer Simulations Present Potential Active Substances Against Coronavirus

Several drugs approved for treating hepatitis C viral infection were identified as potential candidates against COVID-19, a new disease caused by the SARS-CoV-2 coronavirus. This is the result of research based on extensive calculations using the MOGON II supercomputer at Johannes Gutenberg University Mainz (JGU). One of the most powerful computers in the world,

MOGON II is operated by JGU and the Helmholtz Institute Mainz. As the JGU researchers explained in their paper recently published at the World Health Organization (WHO) website, they had simulated the way that about 42,000 different substances listed in open databases bind to certain proteins of SARS-CoV-2 and thereby inhibit the penetration of the virus into the human body or its multiplication. "This computer simulation method is known as molecular docking and it has been recognized and used for years. It is much faster and less expensive than lab experiments," said Professor Thomas Efferth of the JGU Institute of Pharmacy and Biomedical Sciences, lead author of the study. "As far as we know, we were the first to have used molecular docking with SARS-CoV-2. And it is fantastic news that we have found a number of approved hepatitis C drugs as promising candidates for treatment."

Using the MOGON II supercomputer, the reseachers made more than 30 billion single calculations within two months and found that compounds from the four hepatitis C drugs simeprevir, paritaprevir, grazoprevir, and velpatasvir have a high affinity to bind SARS-CoV-2 very strongly and may therefore be able to prevent infection. "This is also supported by the fact that both SARS-CoV-2 and the hepatitis C virus are a virus of the same type, a so-called single-stranded RNA virus," explained Efferth. According to the researchers, a natural substance from the Japanese honeysuckle (Lonicera japonica), which has been used in Asia against various other diseases for some time now, might be another strong candidate against SARS-CoV-2.

"Our research results now need to be checked in laboratory experiments and clinical studies," said Efferth and added that molecular docking had already been used successfully in the search for active substances against the coronaviruses MERS-CoV and SARS-CoV.

Kadioglu O, Saeed M, Johannes Greten H, Efferth T.
Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning.
Bull World Health Organ. E-pub: 21 March 2020. doi: 10.2471/BLT.20.255943

Most Popular Now

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...