App Determines COVID-19 Disease Severity Using Artificial Intelligence, Biomarkers

A new mobile app can help clinicians determine which patients with the novel coronavirus (COVID-19) are likely to have severe cases. Created by researchers at NYU College of Dentistry, the app uses artificial intelligence (AI) to assess risk factors and key biomarkers from blood tests, producing a COVID-19 "severity score."

Current diagnostic tests for COVID-19 detect viral RNA to determine whether someone does or does not have the virus - but they do not provide clues as to how sick a COVID-positive patient may become.

"Identifying and monitoring those at risk for severe cases could help hospitals prioritize care and allocate resources like ICU beds and ventilators. Likewise, knowing who is at low risk for complications could help reduce hospital admissions while these patients are safely managed at home," said John T. McDevitt, PhD, professor of biomaterials at NYU College of Dentistry, who led the research.

"We want doctors to have both the information they need and the infrastructure required to save lives. COVID-19 has challenged both of these key areas."

Creating a Severity Score

Using data from 160 hospitalized COVID-19 patients in Wuhan, China, the researchers identified four biomarkers measured in blood tests that were significantly elevated in patients who died versus those who recovered: C-reactive protein (CRP), myoglobin (MYO), procalcitonin (PCT), and cardiac troponin I (cTnI). These biomarkers can signal complications that are relevant to COVID-19, including acute inflammation, lower respiratory tract infection, and poor cardiovascular health.

The researchers then built a model using the biomarkers as well as age and sex, two established risk factors. They trained the model using a machine learning algorithm, a type of AI, to define the patterns of COVID-19 disease and predict its severity. When a patient's biomarkers and risk factors are entered into the model, it produces a numerical COVID-19 severity score ranging from 0 (mild or moderate) to 100 (critical).

The model was validated using data from 12 hospitalized COVID-19 patients from Shenzhen, China, which confirmed that the model's severity scores were significantly higher for the patients that died versus those who were discharged. These findings are published in Lab on a Chip, a journal of the Royal Society of Chemistry.

As New York City emerged as the epicenter of the pandemic, the researchers further validated the model using data from more than 1,000 New York City COVID-19 patients. To make the tool available and convenient for clinicians, they developed a mobile app that can be used at point-of-care to quickly calculate a patient's severity score.

A Clinical Decision Support Tool

The app has been retrospectively evaluated in the Family Health Centers at NYU Langone in Brooklyn, which serve more than 102,000 patients each year as one of the nation's largest Federally Qualified Health Center networks.

"Real time clinical decision support tools for COVID-19 can be extremely helpful, particularly in the outpatient setting, to help guide monitoring and treatment plans for those at greatest risk," said Isaac P. Dapkins, MD, chief medical officer for the Family Health Centers at NYU Langone and a co-author on the Lab on a Chip study.

After optimizing the clinical utility of the app at the Family Health Centers at NYU Langone in May, the researchers aim to roll it out nationwide in the coming weeks. It is possible that the COVID-19 severity score could be integrated with electronic health records, thereby providing clinicians with actionable information at an early stage for those diagnosed with COVID-19.

"We hope this tool can help identify those at high risk for adverse outcomes and reduce the health disparities present with COVID-19," said Larry K. McReynolds, executive director for the Family Health Centers at NYU Langone.

Building on Innovations in Testing

The COVID-19 severity score leverages a model McDevitt previously developed to predict outcomes for patients with cardiac disease. Cardiac health is one of several priorities of McDevitt's lab, which creates point-of-care diagnostic systems that can be programmed to test for oral cancer, cardiac disease, and now COVID-19 biomarkers.

The diagnostic system uses small, non-invasive samples - such as swabs of saliva or drops of blood from a fingertip - which are added to credit card-sized cartridges armed with bio-nano-chips pioneered by McDevitt. The cartridge is inserted into a portable analyzer that simultaneously tests for a range of biomarkers, with results available in less than half an hour.

Because this technology is currently used for research and informational purposes only, the COVID-19 app can be used with existing laboratory tests and requires oversight by an authorized clinician. However, over the next few months, McDevitt's laboratory, in partnership with SensoDx, a company spun out of his lab, plans to develop and scale the ability to test a drop of blood for COVID-19 severity biomarkers - similar to how a person with diabetes tests their blood sugar - and produce a severity score on the spot.

"With COVID-19, point-of-care testing, coupled with a decision support system, could improve how clinicians triage patients - and potentially improve their outcomes, particularly for those who need more immediate and aggressive care," said McDevitt.

In addition to McDevitt's research group at NYU College of Dentistry, the study involved collaborators from NYU Grossman School of Medicine, NYU Tandon School of Engineering, Zhongnan Hospital of Wuhan University, and Latham BioPharm Group. The app was developed by McDevitt's laboratory and OraLiva, a company founded by McDevitt, and is available for both Apple and Android devices. The app is designated for use by authorized clinicians and is not intended for general use by patients.

Michael P McRae, Glennon W Simmons, Nicolaos J Christodoulides, Zhibing Lu, Stella K Kang, David Fenyo, Timothy Alcorn, Isaac P Dapkins, Iman Sharif, Deniz Vurmaz, Sayli S Modak, Kritika Srinivasan, Shruti Warhadpande, Ravi Shrivastava, John T McDevitt.
Clinical decision support tool and rapid point-of-care platform for determining disease severity in patients with COVID-19.
Lab Chip, 2020. doi: 10.1039/D0LC00373E.

Most Popular Now

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...