Researchers Develop Software to Find Drug-Resistant Bacteria

Washington State University researchers have developed an easy-to-use software program to identify drug-resistant genes in bacteria. The program could make it easier to identify the deadly antimicrobial resistant bacteria that exist in the environment. Such microbes annually cause more than 2.8 million difficult-to-treat pneumonia, bloodstream and other infections and 35,000 deaths in the U.S. The researchers, including PhD computer science graduate Abu Sayed Chowdhury, Shira Broschat in the School of Electrical Engineering and Computer Science, and Douglas Call in the Paul G. Allen School for Global Animal Health, report on their work in the journal Scientific Reports.

Antimicrobial resistance (AMR) occurs when bacteria or other microorganisms evolve or acquire genes that encode drug-resistance mechanisms. Bacteria that cause staph or strep infections or diseases such as tuberculosis and pneumonia have developed drug-resistant strains that make them increasingly difficult and sometimes impossible to treat. The problem is expected to worsen in future decades in terms of increased infections, deaths, and health costs as bacteria evolve to "outsmart" a limited number of antibiotic treatments.

"We need to develop tools to easily and efficiently predict antimicrobial resistance that increasingly threatens health and livelihoods around the world," said Chowdhury, lead author on the paper.

As large-scale genetic sequencing has become easier, researchers are looking for AMR genes in the environment. Researchers are interested in where microbes are living in soil and water and how they might spread and affect human health. While they are able to identify genes that are similar to known AMR-resistant genes, they are probably missing genes for resistance that look very unique from a protein sequence perspective.

The WSU research team developed a machine-learning algorithm that uses features of AMR proteins rather than the similarity of gene sequences to identify AMR genes. The researchers used game theory, a tool that is used in several fields, especially economics, to model strategic interactions between game players, which in turn helps identify AMR genes. Using their machine learning algorithm and game theory approach, the researchers looked at the interactions of several features of the genetic material, including its structure and the physiochemical and composition properties of protein sequences rather than simply sequence similarity.

"Our software can be employed to analyze metagenomic data in greater depth than would be achieved by simple sequence matching algorithms," Chowdhury said. "This can be an important tool to identify novel antimicrobial resistance genes that eventually could become clinically important."

"The virtue of this program is that we can actually detect AMR in newly sequenced genomes," Broschat said. "It's a way of identifying AMR genes and their prevalence that might not otherwise have been found. That's really important."

The WSU team considered resistance genes found in species of Clostridium, Enterococcus, Staphylococcus, Streptococcus, and Listeria. These bacteria are the cause of many major infections and infectious diseases including staph infections, food poisoning, pneumonia, and life-threatening colitis due to C. difficile. They were able to accurately classify resistant genes with up to 90 percent accuracy.

They have developed a software package that can be easily downloaded and used by other researchers to look for AMR in large pools of genetic material. The software can also be improved over time. While it's trained on currently available data, researchers will be able to re-train the algorithm as more data and sequences become available.

"You can bootstrap and improve the software as more positive data becomes available," Broschat said.

Abu Sayed Chowdhury, Douglas R Call, Shira L Broschat.
PARGT: a software tool for predicting antimicrobial resistance in bacteria.
Scientific Reports volume 10, Article number: 11033, 2020. doi: 10.1038/s41598-020-67949-9

Most Popular Now

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...