Researchers Develop Software to Find Drug-Resistant Bacteria

Washington State University researchers have developed an easy-to-use software program to identify drug-resistant genes in bacteria. The program could make it easier to identify the deadly antimicrobial resistant bacteria that exist in the environment. Such microbes annually cause more than 2.8 million difficult-to-treat pneumonia, bloodstream and other infections and 35,000 deaths in the U.S. The researchers, including PhD computer science graduate Abu Sayed Chowdhury, Shira Broschat in the School of Electrical Engineering and Computer Science, and Douglas Call in the Paul G. Allen School for Global Animal Health, report on their work in the journal Scientific Reports.

Antimicrobial resistance (AMR) occurs when bacteria or other microorganisms evolve or acquire genes that encode drug-resistance mechanisms. Bacteria that cause staph or strep infections or diseases such as tuberculosis and pneumonia have developed drug-resistant strains that make them increasingly difficult and sometimes impossible to treat. The problem is expected to worsen in future decades in terms of increased infections, deaths, and health costs as bacteria evolve to "outsmart" a limited number of antibiotic treatments.

"We need to develop tools to easily and efficiently predict antimicrobial resistance that increasingly threatens health and livelihoods around the world," said Chowdhury, lead author on the paper.

As large-scale genetic sequencing has become easier, researchers are looking for AMR genes in the environment. Researchers are interested in where microbes are living in soil and water and how they might spread and affect human health. While they are able to identify genes that are similar to known AMR-resistant genes, they are probably missing genes for resistance that look very unique from a protein sequence perspective.

The WSU research team developed a machine-learning algorithm that uses features of AMR proteins rather than the similarity of gene sequences to identify AMR genes. The researchers used game theory, a tool that is used in several fields, especially economics, to model strategic interactions between game players, which in turn helps identify AMR genes. Using their machine learning algorithm and game theory approach, the researchers looked at the interactions of several features of the genetic material, including its structure and the physiochemical and composition properties of protein sequences rather than simply sequence similarity.

"Our software can be employed to analyze metagenomic data in greater depth than would be achieved by simple sequence matching algorithms," Chowdhury said. "This can be an important tool to identify novel antimicrobial resistance genes that eventually could become clinically important."

"The virtue of this program is that we can actually detect AMR in newly sequenced genomes," Broschat said. "It's a way of identifying AMR genes and their prevalence that might not otherwise have been found. That's really important."

The WSU team considered resistance genes found in species of Clostridium, Enterococcus, Staphylococcus, Streptococcus, and Listeria. These bacteria are the cause of many major infections and infectious diseases including staph infections, food poisoning, pneumonia, and life-threatening colitis due to C. difficile. They were able to accurately classify resistant genes with up to 90 percent accuracy.

They have developed a software package that can be easily downloaded and used by other researchers to look for AMR in large pools of genetic material. The software can also be improved over time. While it's trained on currently available data, researchers will be able to re-train the algorithm as more data and sequences become available.

"You can bootstrap and improve the software as more positive data becomes available," Broschat said.

Abu Sayed Chowdhury, Douglas R Call, Shira L Broschat.
PARGT: a software tool for predicting antimicrobial resistance in bacteria.
Scientific Reports volume 10, Article number: 11033, 2020. doi: 10.1038/s41598-020-67949-9

Most Popular Now

Stanford Medicine Study Suggests Physici…

Artificial intelligence-powered chatbots are getting pretty good at diagnosing some diseases, even when they are complex. But how do chatbots do when guiding treatment and care after the diagnosis? For...

Adults don't Trust Health Care to U…

A study finds that 65.8% of adults surveyed had low trust in their health care system to use artificial intelligence responsibly and 57.7% had low trust in their health care...

AI Unlocks Genetic Clues to Personalize …

A groundbreaking study led by USC Assistant Professor of Computer Science Ruishan Liu has uncovered how specific genetic mutations influence cancer treatment outcomes - insights that could help doctors tailor...

The 10 Year Health Plan: What do We Need…

Opinion Article by Piyush Mahapatra, Consultant Orthopaedic Surgeon and Chief Innovation Officer at Open Medical. There is a new ten-year plan for the NHS. It will "focus efforts on preventing, as...

People's Trust in AI Systems to Mak…

Psychologists warn that AI's perceived lack of human experience and genuine understanding may limit its acceptance to make higher-stakes moral decisions. Artificial moral advisors (AMAs) are systems based on artificial...

Deep Learning to Increase Accessibility…

Coronary artery disease is the leading cause of death globally. One of the most common tools used to diagnose and monitor heart disease, myocardial perfusion imaging (MPI) by single photon...

AI Model can Read ECGs to Identify Femal…

A new AI model can flag female patients who are at higher risk of heart disease based on an electrocardiogram (ECG). The researchers say the algorithm, designed specifically for female patients...

New AI Tool Mimics Radiologist Gaze to R…

Artificial intelligence (AI) can scan a chest X-ray and diagnose if an abnormality is fluid in the lungs, an enlarged heart or cancer. But being right is not enough, said...

Relationship Between Sleep and Nutrition…

Diet and sleep, which are essential for human survival, are interrelated. However, recently, various services and mobile applications have been introduced for the self-management of health, allowing users to record...

DMEA 2025 - Innovations, Insights and Ne…

8 - 10 April 2025, Berlin, Germany. Less than 50 days to go before DMEA 2025 opens its doors: Europe's leading event for digital health will once again bring together experts...

To be Happier, Take a Vacation... from Y…

Today, nearly every American - 91% - owns a cellphone that can access the internet, according to the Pew Research Center. In 2011, only about one-third did. Another study finds...

Researchers Find Telemedicine may Help R…

Low-value care - medical tests and procedures that provide little to no benefit to patients - contributes to excess medical spending and both direct and cascading harms to patients. A...