Research Offers Radical Rethink of How to Improve AI in the Future

Computer scientists at the University of Essex have devised a radically different approach to improving artificial intelligence (AI) in the future.

Published in top machine learning journal - the Journal of Machine Learning Research - the Essex team hope this research will provide a backbone for the next generation of AI and machine learning breakthroughs.

This could be translated to improvements in everything from driverless cars and smartphones having a better understanding of voice commands, to improved automatic medical diagnoses and drug discovery.

"Artificial intelligence research ultimately has the goal of producing completely autonomous and intelligent machines which we can converse with and will do tasks for us, and this new published work accelerates our progress towards that," explained co-lead author Dr Michael Fairbank, from Essex’s School of Computer Science and Electronic Engineering.

The recent impressive breakthroughs in AI around vision tasks, speech recognition and language translation have involved "deep learning", which means training multi-layered artificial neural networks to solve a task. However, training these deep neural networks is a computationally expensive task, requiring huge amounts of training examples and computing time.

What the Essex team, which includes Professor Luca Citi and Dr Spyros Samothrakis, has achieved is to devise a radically different approach to training neural networks in deep learning.

"Our new method, which we call Target Space, provides researchers with a step change in the way they can improve and build their AI creations," added Dr Fairbank. "Target Space is a paradigm-changing view, which turns the training process of these deep neural networks on its head, ultimately enabling the current progress in AI developments to happen faster."

The standard way people train neural networks to improve performance is to repeatedly make tiny adjustments to the connection strengths between the neurones in the network. The Essex team have taken a new approach. So, instead of tweaking connection strengths between neurones, the new "target-space" method proposes to tweak the firing strengths of the neurones themselves.

Professor Citi added: "This new method stabilises the learning process considerably, by a process which we call cascade untangling. This allows the neural networks being trained to be deeper, and therefore more capable, and at the same time potentially requiring fewer training examples and less computing resources. We hope this work will provide a backbone for the next generation of artificial intelligence and machine-learning breakthroughs."

The next steps for the research are to apply the method to various new academic and industrial applications.

Michael Fairbank, Spyridon Samothrakis, and Luca Citi.
Deep Learning in Target Space.
Journal of Machine Learning Research 23.8 (2022): 1-46.

Most Popular Now

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...