Pilot Study Suggests AI could Help Assess, Improve Heart Transplant Outcomes

Heart transplantation can be a lifesaving operation for patients with end-stage heart failure. However, many patients experience organ transplant rejection, in which the immune system begins attacking the transplanted organ. But detecting transplant rejection is challenging - in its early stages, patients may not experience symptoms, and experts do not always agree on the degree and severity of the rejection. To help address these challenges, investigators from Brigham and Women’s Hospital created an artificial intelligence (AI) system known as the Cardiac Rejection Assessment Neural Estimator (CRANE) that can help detect rejection and estimate its severity. In a pilot study, the team evaluated CRANE's performance on samples provided by patients from three different countries, finding that it could help cardiac experts more accurately diagnose rejection and decrease the time needed for examination. Results are published in Nature Medicine.

"Our retrospective pilot study demonstrated that combining artificial intelligence and human intelligence can improve expert agreement and reduce the time needed to evaluate biopsies," said senior author Faisal Mahmood, PhD, from the Mahmood Lab at the Brigham's Department of Pathology. "Our results set the stage for large-scale clinical trials to establish the utility of AI models for improving heart transplant outcomes."

Heart biopsies are commonly used to identify and grade the severity of organ rejection in patients after heart transplantation. However, several studies have shown that experts often disagree on whether the patient is rejecting the heart or on the degree of severity of the rejection. The variability in diagnosis has direct clinical consequences, causing delays in treatment, unnecessary follow-up biopsies, anxiety, inadequate medication dosing, and, ultimately, worse outcomes.

CRANE is designed to be used in tandem with expert assessment to establish an accurate diagnosis faster, and it can also be used in settings where there may be few pathology experts available. The team trained CRANE for detection, subtyping, and grading of transplant rejection using thousands of pathology images from over 1,300 heart biopsies from the Brigham. The researchers then validated the model, using test biopsies from the Brigham and independent, external test sets received from hospitals in Switzerland and Turkey. The external validation datasets were constructed to demonstrate a large degree of variability to stress-test the proposed AI model.

CRANE performed well in detecting and assessing rejection, with results comparable to those from conventional assessments. When experts used the tool, it reduced disagreement between experts and decreased assessment time. The authors note that its use in clinical practice remains to be determined and plan to make further improvements to the system, but the results illustrate the potential of integrating AI into diagnostics.

"Throughout the history of medicine, diagnostic assessments have been largely subjective," said Mahmood. "But because of the power and assistance of computational tools, that's beginning to change. The time is right to make a shift by bringing together people with clinical expertise and those with expertise in computational science to develop assistive diagnostic tools."

Lipkova J, Chen TY, Lu MY et al.
Deep learning-enabled assessment of cardiac allograft rejection from endomyocardial biopsies.
Nature Medicine 2022. doi: 10.1038/s41591-022-01709-2

Most Popular Now

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...