KTU Researchers Investigate the Links Between Facial Recognition and Alzheimer's Disease

In recent years Alzheimer's disease has been on the rise throughout the world and is rarely diagnosed at an early stage when it can still be effectively controlled. Using artificial intelligence, Kaunas University of Technology (KTU) (Lithuania) researchers conducted a study to identify whether human-computer interfaces could be adapted for people with memory impairments to recognise a visible object in front of them.

Rytis Maskeliūnas, a researcher at the Department of Multimedia Engineering at KTU, considers that the classification of information visible on the face is a daily human function: "While communicating, the face "tells" us the context of the conversation, especially from an emotional point of view, but can we identify visual stimuli based on brain signals?"

The visual processing of the human face is complex. Information such as a person’s identity or emotional state can be perceived by us, analysing the faces. The aim of the study was to analyse a person's ability to process contextual information from the face and detect how a person responds to it.

Face can indicate the first symptoms of the disease

According to Maskeliūnas, many studies demonstrate that brain diseases can potentially be analysed by examining facial muscle and eye movements since degenerative brain disorders affect not only memory and cognitive functions, but also the cranial nervous system associated with the above facial (especially eye) movements.

Dovilė Komolovaitė, a graduate of KTU Faculty of Mathematics and Natural Sciences, who co-authored the study, shared that the research has clarified whether a patient with Alzheimer’s disease visually processes visible faces in the brain in the same way as individuals without the disease.

"The study uses data from an electroencephalograph, which measures the electrical impulses in the brain," says Komolovaitė, who is currently studying for a master’s degree in Artificial Intelligence programme at the Faculty of Informatics.

In this study, the experiment was performed on two groups of individuals: healthy and affected by Alzheimer's.

"The brain signals of a person with Alzheimer's are typically significantly noisier than in a healthy person," says Komolovaitė, emphasising that this correlates with a reason which makes it more difficult for a person to focus and be attentive when experiencing the symptoms of Alzheimer's.

Photos of people’s faces were shown during the study

The study selected a group of older people made up of women over 60 years of age: "Older age is one of the main risk factors for dementia, and since the effects of gender were noticed in brain waves, the study is more accurate when only one gender group is chosen."

During the study, each participant performed experiments lasting up to an hour, during which the photos of human faces are shown. According to the researcher, these photos were selected according to several criteria: in the analysis of the influence of emotions, neutral and fearful faces are shown, while analysing the familiarity factor, known and randomly chosen people are indicated to the participants of the study.

In order to understand whether a person sees and understands a face correctly, the participants of the study were asked to press a button after each stimulus to indicate whether the face shown is inverted or correct.

"Even at this stage, an Alzheimer's patient makes mistakes, so it is important to determine whether the impairment of the object is due to memory or vision processes," says the researcher.

Inspired by real-life interactions with Alzheimer's patients

Maskeliūnas reveals that his work with Alzheimer's disease started with his collaboration with the Huntington's Disease Association, which opened his eyes to what these many neurodegenerative diseases really look like.

The researcher also had direct contact with Alzheimer's patients: "I saw that the diagnosis is usually confirmed too late when the brain is already irreversibly damaged. Although there is no effective cure for this disease, the process can be paused and sustained by gaining some healthy years of life."

Today, we can see how human-computer interaction is adapted to alleviate the life of people with physical disabilities. Controlling a robotic hand by "thought" or a paralysed person writing a text by imagining letters is not a new concept. Still, trying to understand the human brain is probably one of the most challenging tasks remaining today.

In this study, the researchers worked with the data from the standard electroencephalograph equipment, however, Maskeliūnas emphasises that in order to create a practical tool, it would be better to use data gathered from invasive microelectrodes, which can more accurately measure the activity of neurons. This would increase the quality of the AI model substantially.

"Of course, in addition to the technical requirements, there should be a community environment focused on making life easier for people with Alzheimer's disease. Still, in my personal opinion, after five years, I think we will still see technologies focused on improving physical function, and the focus on people affected by brain diseases in this field will only come later," says Maskeliūnas.

According to the master's student Komolovaitė, a clinical examination with the help of colleagues in the field of medicine is necessary, therefore this stage of the process would take a lot of time: "If we want to use this test as a medical tool, a certification process is also needed."

Komolovaitė D, Maskeliūnas R, Damaševičius R.
Deep Convolutional Neural Network-Based Visual Stimuli Classification Using Electroencephalography Signals of Healthy and Alzheimer's Disease Subjects.
Life (Basel). 2022 Mar 4;12(3):374. doi: 10.3390/life12030374

Most Popular Now

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...