Advancing Dynamic Brain Imaging with AI

MRI, electroencephalography (EEG) and magnetoencephalography have long served as the tools to study brain activity, but new research from Carnegie Mellon University introduces a novel, AI-based dynamic brain imaging technology which could map out rapidly changing electrical activity in the brain with high speed, high resolution, and low cost. The advancement comes on the heels of more than thirty years of research that Bin He has undertaken, focused on ways to improve non-invasive dynamic brain imaging technology.

Brain electrical activity is distributed over the three-dimensional brain and rapidly changes over time. Many efforts have been made to image brain function and dysfunction, and each method bears pros and cons. For example, MRI has commonly been used to study brain activity, but is not fast enough to capture brain dynamics. EEG is a favorable alternative to MRI technology however, its less-than-optimal spatial resolution has been a major hindrance in its wide utility for imaging.

Electrophysiological source imaging has also been pursued, in which scalp EEG recordings are translated back to the brain using signal processing and machine learning to reconstruct dynamic pictures of brain activity over time. While EEG source imaging is generally cheaper and faster, specific training and expertise is needed for users to select and tune parameters for every recording. In new published work, He and his group introduce a first of its kind AI-based dynamic brain imaging methodology, that has the potential of imaging dynamics of neural circuits with precision and speed.

"As part of a decades-long effort to develop innovative, non-invasive functional neuroimaging solutions, I have been working on a dynamic brain imaging technology that can provide precision, be effective and easy to use, to better serve clinicians and researchers," said Bin He, professor of biomedical engineering at Carnegie Mellon University.

He continues, "Our group is the first to reach the goal by introducing AI and multi-scale brain models. Using biophysically inspired neural networks, we are innovating this deep learning approach to train a neural network that can precisely translate scalp EEG signals back to neural circuit activity in the brain without human intervention."

In He's study, which was recently published in Proceedings of the National Academy of Sciences (PNAS), the performance of this new approach was evaluated by imaging sensory and cognitive brain responses in 20 healthy human subjects. It was also rigorously validated in identifying epileptogenic tissue in a cohort of 20 drug-resistant epilepsy patients by comparing AI based noninvasive imaging results with invasive measurements and surgical resection outcomes.

Results wise, the novel AI approach outperformed conventional source imaging methods when precision and computational efficiency are considered.

"With this new approach, you only need a centralized location to perform brain modeling and training deep neural network," explained He. "After collecting data in a clinical or research setting, clinicians and researchers could remotely submit the data to the centralized well trained deep neural networks and quickly receive accurate analysis results. This technology could speed up diagnosis and assist neurologists and neurosurgeons for better and faster surgical planning."

As a next step, the group plans to conduct larger clinical trials in efforts to bring the research closer to clinical implementation.

"The goal is for efficient and effective dynamic brain imaging with simple operation and low cost," explained He. "This AI-based brain source imaging technology makes it possible."

Sun R, Sohrabpour A, Worrell GA, He B.
Deep neural networks constrained by neural mass models improve electrophysiological source imaging of spatiotemporal brain dynamics.
Proc Natl Acad Sci U S A. 2022 Aug 2;119(31):e2201128119. doi: 10.1073/pnas.2201128119

Most Popular Now

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...