No One-Size-Fits-All AI Approach Works for Prevention, Diagnosis or Treatment Using Precision Medicine

A Rutgers analysis of dozens of artificial intelligence (AI) software programs used in precision, or personalized, medicine to prevent, diagnose and treat disease found that no program exists that can be used for all treatments.

Precision medicine, a technology still in its infancy, is an approach to treatment that uses information about an individual's medical history and genetic profile and relates it to the information of many others to find patterns that can help prevent, diagnose or treat a disease. The AI-based approach rests on a high level of both computing power and machine-learning intelligence because of the enormous scope of medical and genetic information scoured and analyzed for patterns.

"Precision medicine is one of the most trending subjects in basic and medical science today," said Zeeshan Ahmed, an assistant professor of medicine at Rutgers Robert Wood Johnson Medical School who led the study, published in Briefings in Bioinformatics. "Major reasons include its potential to provide predictive diagnostics and personalized treatment to variable known and rare disorders. However, until now, there has been very little effort exerted in organizing and understanding the many computing approaches to this field. We want to pave the way for a new data-centric era of discovery in health care."

The comparative and systematic review, believed by the authors to be one of the first of its kind, identified 32 of the most prevalent precision medicine AI approaches used to study preventive treatments for a range of diseases, including obesity, Alzheimer's, inflammatory bowel disease, breast cancer and major depressive disorder. The bevy of AI approaches analyzed in the study - the researchers combed through five years of high-quality medical literature - suggest the field is advancing rapidly but is suffering from disorganization, Ahmed said.

In AI, software programs simulate human intelligence processes. In machine learning, a subcategory of AI, programs are designed to "learn" as they process more and more data, becoming ever more accurate at predicting outcomes. The effort rests on algorithms, step-by-step procedures for solving a problem or performing a computation.

Researchers such as Ahmed, who conducts studies on cardiovascular genomics at the Rutgers Institute for Health, Health Care Policy and Aging Research (IFH), are racing to collect and analyze complex biological data while also developing the computational systems that undergird the endeavor.

Because the use of genetics is "arguably the most data-rich and complex component of precision medicine," Ahmed said, the team focused especially on reviewing and comparing scientific objectives, methodologies, data sources, ethics and gaps in approaches used.

Those interested in precision medicine, he said, can look to the paper for guidance as to which AI programs may be best suited for their research.

To aid the advent of precision medicine, the study concluded that the scientific community needs to embrace several "grand challenges," from addressing general issues such as improved data standardization and enhanced protection of personal identifying information to more technical issues such as correcting for errors in genomic and clinical data.

"AI has the potential to play a vital role to achieve significant improvements in providing better individualized and population healthcare at lower costs," Ahmed said. "We need to strive to address possible challenges that continue to slow the advancements of this breakthrough treatment approach."

Other Rutgers researchers involved in the study included Sreya Vadapalli and Habiba Abdelhalim, research assistants at the IFH, and Saman Zeeshan, a bioinformatics research scientist and former postdoctoral research associate at the Rutgers Cancer Institute of New Jersey.

Vadapalli S, Abdelhalim H, Zeeshan S, Ahmed Z.
Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine.
Brief Bioinform. 2022 May 21:bbac191. doi: 10.1093/bib/bbac191

Most Popular Now

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...

Shape-Changing Device Helps Visually Imp…

Researchers from Imperial College London, working with the company MakeSense Technology and the charity Bravo Victor, have developed a shape-changing device called Shape that helps people with visual impairment navigate...

Bayer Acquires HiDoc Technologies and Ca…

Bayer is today announcing that it plans to acquire HiDoc Technologies GmbH in the first quarter of 2025 and to start commercialization of the digital health application, Cara Care®. Cara...