AI Approach may Help Identify Melanoma Survivors who Face a High Risk of Cancer Recurrence

Most deaths from melanoma - the most lethal form of skin cancer - occur in patients who were initially diagnosed with early-stage melanoma and then later experienced a recurrence that is typically not detected until it has spread or metastasized.

A team led by investigators at Massachusetts General Hospital (MGH) recently developed an artificial intelligence - based method to predict which patients are most likely to experience a recurrence and are therefore expected to benefit from aggressive treatment. The method was validated in a study published in npj Precision Oncology.

Most patients with early-stage melanoma are treated with surgery to remove cancerous cells, but patients with more advanced cancer often receive immune checkpoint inhibitors, which effectively strengthen the immune response against tumor cells but also carry significant side effects.

"There is an urgent need to develop predictive tools to assist in the selection of high-risk patients for whom the benefits of immune checkpoint inhibitors would justify the high rate of morbid and potentially fatal immunologic adverse events observed with this therapeutic class," says senior author Yevgeniy R. Semenov, MD, an investigator in the Department of Dermatology at MGH.

"Reliable prediction of melanoma recurrence can enable more precise treatment selection for immunotherapy, reduce progression to metastatic disease and improve melanoma survival while minimizing exposure to treatment toxicities."

To help achieve this, Semenov and his colleagues assessed the effectiveness of algorithms based on machine learning, a branch of artificial intelligence, that used data from patient electronic health records to predict melanoma recurrence.

Specifically, the team collected 1,720 early-stage melanomas - 1,172 from the Mass General Brigham healthcare system (MGB) and 548 from the Dana-Farber Cancer Institute (DFCI) - and extracted 36 clinical and pathologic features of these cancers from electronic health records to predict patients' recurrence risk with machine learning algorithms. Algorithms were developed and validated with various MGB and DFCI patient sets, and tumor thickness and rate of cancer cell division were identified as the most predictive features.

"Our comprehensive risk prediction platform using novel machine learning approaches to determine the risk of early-stage melanoma recurrence reached high levels of classification and time to event prediction accuracy," says Semenov. "Our results suggest that machine learning algorithms can extract predictive signals from clinicopathologic features for early-stage melanoma recurrence prediction, which will enable the identification of patients who may benefit from adjuvant immunotherapy."

Wan, G., Nguyen, N., Liu, F. et al.
Prediction of early-stage melanoma recurrence using clinical and histopathologic features.
npj Precis. Onc. 6, 79, 2022. doi: 10.1038/s41698-022-00321-4

Most Popular Now

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...