Evaluating Use of New AI Technology in Diagnosing COVID-19

Published in the Journal of the American Medical Informatics Association, University of Minnesota researchers led a study evaluating federated learning variations for COVID-19 diagnosis in chest x-rays. Federated learning is an artificial intelligence (AI) technique that enables multiple parties to develop and train AI models collaboratively without the need to exchange or centralize data sets.

This research is a collaboration between the U of M, M Health Fairview, Emory University, Indiana University School of Medicine and University of Florida.

The research team compared the performance of a single site to a three-client federated model using a previously described COVID-19 diagnostic model. They found personalized federated learning may offer an opportunity to develop both internal and externally validated algorithms.

"Federated learning is an important future solution for AI in healthcare," Christopher Tignanelli, MD, MS, an associate professor at the University of Minnesota Medical School. "As all machine learning methods benefit greatly from the ability to access data that provides closer to a true global distribution, federated learning is a promising approach to obtain powerful, accurate, safe, robust and unbiased models."

Dr. Tignanelli co-led this study with Ju Sun, PhD, an assistant professor in the College of Science and Engineering. Both are leaders of the Program for Clinical AI in the Center for Learning Health System Sciences at the U of M Medical School.

"We're proud to be among the first teams implementing and further refining federated learning in real-world healthcare settings, with the strong support of industrial partners including Nvidia and Cisco," said Sun. "Data is the oil for modern AI, and federated learning makes the perfect oil refinery to advance AI for healthcare."

By enabling multiple parties to train collaboratively without the need to exchange or centralize data sets, the research team says federated learning helps protect sensitive medical data and may open new research and business avenues to improve patient care.

State-of-the-art algorithms are usually evaluated on carefully curated data sets originating from only a few sources, rather than truly representative data. This can introduce biases where demographics or technical imbalances skew predictions and adversely affect the accuracy for certain groups or sites. Researchers say to capture subtle relationships between disease patterns, socio-economic and genetic factors, and complex and rare cases, it is crucial to expose a model to diverse cases.

The research team says other potential benefits of federated learning include:

  • Improved medical image and text analysis;
  • Better diagnostic tools for clinicians;
  • Collaborative and accelerated drug discovery;
  • Decreased cost and time-to-market for pharmaceutical companies;
  • Rare disease cases where no single institution has enough cases to train models.

"We truly believe the potential impact on precision medicine and ultimately improving medical care is very promising," said Dr. Tignanelli.

Further research is suggested to address more technical questions in using this technology. Part of the funding for this research was provided by Cisco.

Le Peng, Gaoxiang Luo, Andrew Walker, Zachary Zaiman, Emma K Jones, Hemant Gupta, Kristopher Kersten, John L Burns, Christopher A Harle, Tanja Magoc, Benjamin Shickel, Scott D Steenburg, Tyler Loftus, Genevieve B Melton, Judy Wawira Gichoya, Ju Sun, Christopher J Tignanelli.
Evaluation of federated learning variations for COVID-19 diagnosis using chest radiographs from 42 US and European hospitals.
Journal of the American Medical Informatics Association, 2022. doi: 10.1093/jamia/ocac188

Most Popular Now

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...