Brain Area Necessary for Fluid Intelligence Identified

A team led by UCL and UCLH researchers have mapped the parts of the brain that support our ability to solve problems without prior experience - otherwise known as fluid intelligence.

Fluid intelligence is arguably the defining feature of human cognition. It predicts educational and professional success, social mobility, health, and longevity. It also correlates with many cognitive abilities such as memory.

Fluid intelligence is thought to be a key feature involved in “active thinking” - a set of complex mental processes such as those involved in abstraction, judgment, attention, strategy generation and inhibition. These skills can all be used in everyday activities – from organising a dinner party to filling out a tax return.

Despite its central role in human behaviour, fluid intelligence remains contentious, with regards to whether it is a single or a cluster of cognitive abilities, and the nature of its relationship with the brain.

To establish which parts of the brain are necessary for a certain ability, researchers must study patients in whom that part is either missing or damaged. Such “lesion-deficit mapping” studies are difficult to conduct owing to the challenge of identifying and testing patients with focal brain injury.

Consequently, previous studies have mainly used functional imaging (fMRI) techniques - which can be misleading.

The new study, led by UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery at UCLH researchers and published in Brain, investigated 227 patients who had suffered either a brain tumour or stroke to specific parts of the brain, using the Raven Advanced Progressive Matrices (APM): the best-established test of fluid intelligence. The test contains multiple choice visual pattern problems of increasing difficulty. Each problem presents an incomplete pattern of geometric figures and requires selection of the missing piece from a set of multiple possible choices.

The researchers then introduced a novel “lesion-deficit mapping” approach to disentangle the intricate anatomical patterns of common forms of brain injury, such as stroke.

Their approach treated the relations between brain regions as a mathematical network whose connections describe the tendency of regions to be affected together, either because of the disease process or in reflection of common cognitive ability.

This enabled researchers to disentangle the brain map of cognitive abilities from the patterns of damage - allowing them to map the different parts of the brain and determine which patients did worse in the fluid intelligence task according to their injuries.

The researchers found that fluid intelligence impaired performance was largely confined to patients with right frontal lesions - rather than a wide set of regions distributed across the brain. Alongside brain tumours and stroke, such damage is often found in patients with a range of other neurological conditions, including traumatic brain injury and dementia.

Lead author, Professor Lisa Cipolotti (UCL Queen Square Institute of Neurology), said: "Our findings indicate for the first time that the right frontal regions of the brain are critical to the high-level functions involved in fluid intelligence, such as problem solving and reasoning.

"This supports the use of APM in a clinical setting, as a way of assessing fluid intelligence and identifying right frontal lobe dysfunction.

"Our approach of combining novel lesion-deficit mapping with detailed investigation of APM performance in a large sample of patients provides crucial information about the neural basis of fluid intelligence. More attention to lesion studies is essential to uncover the relationship between the brain and cognition, which often determines how neurological disorders are treated."

The study was funded by Welcome and the NIHR UCLH Biomedical Research Centre funding scheme. Researchers also received funding from The National Brain Appeal and the Guarantors of Brain.

Cipolotti L, Ruffle JK, Mole J, Xu T, Hyare H, Shallice T, Chan E, Nachev P.
Graph lesion-deficit mapping of fluid intelligence.
Brain. 2022 Dec 28:awac304. doi: 10.1093/brain/awac304

Most Popular Now

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...