Online AI-Based Test for Parkinson's Disease Severity Shows Promising Results

An artificial intelligence (AI) tool developed by researchers at the University of Rochester can help people with Parkinson's disease remotely assess the severity of their symptoms within minutes. A study in npj Digital Medicine describes the new tool, which has users tap their fingers 10 times in front of a webcam to assess motor performance on a scale of 0-4.

Doctors often have patients perform simple motor tasks to assess movement disorders and rate the severity using guidelines such as the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). The AI model provides a rapid assessment using the MDS-UPDRS guidelines, automatically generating computational metrics such as speed, amplitude, frequency, and period that are interpretable, standardized, repeatable, and consistent with medical guidebooks. It uses those attributes to classify the severity of tremors.

The finger-tapping task was performed by 250 global participants with Parkinson’s disease and the AI system's ratings were compared with those by three neurologists and three primary care physicians. While expert neurologists performed slightly better than the AI model, the AI model outperformed the primary care physicians with UPDRS certification.

The AI-based Parkinson's disease severity test generates computational metrics such as speed, amplitude, frequency, and period, and uses those attributes to classify the severity of tremors. (Photo provided)

"These findings could have huge implications for patients who have difficulty gaining access to neurologists, getting appointments, and traveling to the hospital," says Ehsan Hoque, an associate professor in Rochester's Department of Computer Science and co-director of the Rochester Human-Computer Interaction Laboratory. "It's an example of how AI is being gradually introduced into health care to serve people outside of the clinic and improve health equity and access."

The study was led by Md. Saiful Islam, a Google PhD fellow and a graduate student in computer science advised by Hoque. The team of computer scientists collaborated with several members of the Medical Center's Department of Neurology, including associate professor Jamie Adams; Ray Dorsey, the David M. Levy Professor of Neurology; and associate professor Ruth Schneider.

The researchers say their method can be applied to other motor tasks, which opens the door to evaluating other types of movement disorders such as ataxia and Huntington's disease. The new Parkinson's disease assessment is available online, though the researchers caution that it reflects an emerging technology and at this early stage should not be considered, on its own and without a physician’s input, as a definitive measure of the presence or severity of the disease.

Islam MS, Rahman W, Abdelkader A, Lee S, Yang PT, Purks JL, Adams JL, Schneider RB, Dorsey ER, Hoque E.
Using AI to measure Parkinson's disease severity at home.
NPJ Digit Med. 2023 Aug 23;6(1):156. doi: 10.1038/s41746-023-00905-9

Most Popular Now

AI System Helps Doctors Identify Patient…

A new study from Vanderbilt University Medical Center shows that clinical alerts driven by artificial intelligence (AI) can help doctors identify patients at risk for suicide, potentially improving prevention efforts...

Smartphone App can Help Reduce Opioid Us…

Patients with opioid use disorder can reduce their days of opioid use and stay in treatment longer when using a smartphone app as supportive therapy in combination with medication, a...

AI's New Move: Transforming Skin Ca…

Pioneering research has unveiled a powerful new tool in the fight against skin cancer, combining cutting-edge artificial intelligence (AI) with deep learning to enhance the precision of skin lesion classification...

Leveraging AI to Assist Clinicians with …

Physical examinations are important diagnostic tools that can reveal critical insights into a patient's health, but complex conditions may be overlooked if a clinician lacks specialized training in that area...

AI can Improve Ovarian Cancer Diagnoses

A new international study led by researchers at Karolinska Institutet in Sweden shows that AI-based models can outperform human experts at identifying ovarian cancer in ultrasound images. The study is...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

Using AI to Uncover Hospital Patients�…

Across the United States, no hospital is the same. Equipment, staffing, technical capabilities, and patient populations can all differ. So, while the profiles developed for people with common conditions may...

New AI Tool Uses Routine Blood Tests to …

Doctors around the world may soon have access to a new tool that could better predict whether individual cancer patients will benefit from immune checkpoint inhibitors - a type of...

New Method Tracks the 'Learning Cur…

Introducing Annotatability - a powerful new framework to address a major challenge in biological research by examining how artificial neural networks learn to label genomic data. Genomic datasets often contain...

From Text to Structured Information Secu…

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected...

Picking the Right Doctor? AI could Help

Years ago, as she sat in waiting rooms, Maytal Saar-Tsechansky began to wonder how people chose a good doctor when they had no way of knowing a doctor's track record...