Smartphone Technology Expected to Advance Assessment of Neurological Soft Signs in Schizophrenia

Since the 1980s, we have known that neurological soft signs (NSS) can distinguish people with schizophrenia from psychiatrically healthy individuals. NSS are subtle neurological impairments that principally manifest as decreased sensory integration (trouble receiving and responding to information transmitted to the brain through the senses) and difficulties with balance, rapid successive movements, and right–left orientation.

NSS doesn't always cause impairment of daily living, but identifying them could improve the diagnosis and treatment of schizophrenia and enhance understanding of the disease itself. Unfortunately, barriers to assessment have persisted for more than 40 years - rating systems for NSS are subjective, so it's difficult to reliably measure and compare deficits.

In a perspectives article published in Harvard Review of Psychiatry (HRP), part of the Lippincott portfolio from Wolters Kluwer, John Torous, MD, MBI and colleagues of Harvard's Beth Israel Deaconess Medical Center and the Massachusetts Mental Health Center in Boston, discuss how smartphone sensing technology could be used to create standardized NSS assessments.

Advances in smartphones and digital phenotyping offer a means for more reliable scoring

In 2016, Dr. Torous and his colleagues were the first to define "digital phenotyping," the use of data from smart devices to identify behavior patterns that can detect disease. In the case of NSS, physicians can collect information from a smartphone's motion sensors, like those that adjust the screen display from portrait to landscape and react to gaming-related gestures, to detect behavior patterns as possible NSS markers. For example:

A test of balance: Patients stand with their arms held parallel to the floor and their eyes closed for one minute; patients could perform the same test with a smartphone attached to their sternums.

A test of motor coordination (like the tandem walk): Patients walk heel-to-toe in a straight line for 12 feet; the same test has been administered to patients with Parkinson's disease by having them put a smartphone in their pants pockets.

A test of complex motor acts: Ask the patient to reproduce a series of audible taps; alternatively, the smartphone could play a beat with the patient tapping along, and the patient could be asked to continue tapping the same pattern after the beat stops.

Smartphones and digital phenotyping have multiple advantages over traditional assessment

A smartphone makes objective measurements so it can quantitatively evaluate how well a patient does on a test rather than have the examiner decide whether the patient is impaired. In addition, using smartphones for NSS measurement could reduce the time necessary for neurological office visits since patients could complete aspects of the examination before or after a visit.

"Incorporating digital phenotyping into NSS assessment offers the potential to make measurement more scalable, accessible, and directly comparable across locations, cultures, and demographics," Dr. Torous and his colleagues note. Some tests may require use of a camera, but with proper security and privacy features in place the data could be safely employed.

"The rapid adoption of telehealth measures due to the COVID-19 pandemic increased patient buy-in and enhanced privacy considerations, making it an advantageous time to introduce smartphone sensing technology and tools to measure NSS," the authors conclude.

Gray LE, Buchanan RW, Keshavan MS, Torous J.
Potential Role of Smartphone Technology in Advancing Work on Neurological Soft Signs with a Focus on Schizophrenia.
Harv Rev Psychiatry. 2023 Sep-Oct 01;31(5):226-233. doi: 10.1097/HRP.0000000000000377

Most Popular Now

AI may Help Clinicians Personalize Treat…

Individuals with generalized anxiety disorder (GAD), a condition characterized by daily excessive worry lasting at least six months, have a high relapse rate even after receiving treatment. Artificial intelligence (AI)...

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

Can AI Help Detect Cognitive Impairment?

Mild cognitive impairment (MCI) can be an early indicator of Alzheimer's disease or dementia, so identifying those with cognitive issues early could lead to interventions and better outcomes. But diagnosing...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

AI can Open Up Beds in the ICU

At the height of the COVID-19 pandemic, hospitals frequently ran short of beds in intensive care units. But even earlier, ICUs faced challenges in keeping beds available. With an aging...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

Patients' Affinity for AI Messages …

In a Duke Health-led survey, patients who were shown messages written either by artificial intelligence (AI) or human clinicians indicated a preference for responses drafted by AI over a human...

New Research Explores How AI can Build T…

In today’s economy, many workers have transitioned from manual labor toward knowledge work, a move driven primarily by technological advances, and workers in this domain face challenges around managing non-routine...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...