AI can Open Up Beds in the ICU

At the height of the COVID-19 pandemic, hospitals frequently ran short of beds in intensive care units. But even earlier, ICUs faced challenges in keeping beds available. With an aging American population, 11% of hospital stays included ICU stays.

Artificial intelligence (AI) offers a possible solution, says Indranil Bardhan, professor of information, risk, and operations management and Charles and Elizabeth Prothro Regents Chair in Health Care Management at Texas McCombs. AI models can predict the lengths of time patients will spend in the ICU, helping hospitals better manage their beds and, ideally, cut costs.

But although AI is good at predicting length of stay, it’s not so good at describing the reasons, Bardhan says. That makes doctors less likely to trust and adopt it.

"People were mostly focused on the accuracy of prediction, and that’s an important thing," he says. "The prediction is good, but can you explain your prediction?"

In new research, Bardhan makes AI’s outputs more understandable and useful to ICU doctors, an approach called explainable artificial intelligence (XAI).

With McCombs doctoral student Tianjian Guo, Ying Ding of UT's School of Information, and Shichang Zhang of Harvard University, Bardhan designed a model and trained it on a dataset of 22,243 medical records from 2001 to 2012.

The model processes 47 different attributes of patients at the time they’re admitted, including age, gender, vital signs, medications, and diagnosis. It constructs graphs that show a patient’s probability of being discharged within seven days. The graphs also depict which attributes most influence the outcome and how they interact.

In one example, the model calculates an 8.5% likelihood of discharge within seven days. It points to a respiratory system diagnosis as the main reason, and to age and medications as secondary factors.

Running their model against other XAI models, the researchers found its predictions were just as accurate, while its explanations were more comprehensive.

To test how useful their model might be in practice, the team surveyed six physicians at Austin-area ICUs, asking them to read and evaluate samples of the model’s explanations. Four of the six said the model could improve their staffing and resource management, helping them better plan patient scheduling.

The model has one major limitation, Bardhan notes: the age of the data. In 2014, the industry’s medical coding system changed from ICD-9-CM to ICD-10-CM, adding much more detail in diagnosis coding and classification.

"If we were able to get access to more recent data, we would have loved to extend our models using that data," he says.

His model need not be limited, however, to adult ICUs. “You could extend it to pediatric ICUs and neonatal ICUs," Bardhan says. "You could use this model for emergency room settings.

"Even if you're talking about a regular hospital unit, if you want to know how much or how long a patient is likely to need a hospital bed, we can easily extend our model to that setting."

Tianjian Guo, Indranil R Bardhan, Ying Ding, Shichang Zhang.
An Explainable Artificial Intelligence Approach Using Graph Learning to Predict Intensive Care Unit Length of Stay. Information Systems Research, 2024. doi: 10.1287/isre.2023.0029

Most Popular Now

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

Research Shows AI Technology Improves Pa…

Existing research indicates that the accuracy of a Parkinson's disease diagnosis hovers between 55% and 78% in the first five years of assessment. That's partly because Parkinson's sibling movement disorders...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...

DMEA sparks: The Future of Digital Healt…

8 - 10 April 2025, Berlin, Germany. Digitalization is considered one of the key strategies for addressing the shortage of skilled workers - but the digital health sector also needs qualified...

First Therapy Chatbot Trial Shows AI can…

Dartmouth researchers conducted the first clinical trial of a therapy chatbot powered by generative AI and found that the software resulted in significant improvements in participants' symptoms, according to results...

Who's to Blame When AI Makes a Medi…

Assistive artificial intelligence technologies hold significant promise for transforming health care by aiding physicians in diagnosing, managing, and treating patients. However, the current trend of assistive AI implementation could actually...

DeepSeek: The "Watson" to Doct…

DeepSeek is an artificial intelligence (AI) platform built on deep learning and natural language processing (NLP) technologies. Its core products include the DeepSeek-R1 and DeepSeek-V3 models. Leveraging an efficient Mixture...

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...