Software Created from 'Building Blocks' could Incorporate AI, Supporting Medical Staff with Workflow and Disease Management

New 'building-block' approaches to the creation of digital tools which include data and artificial intelligence (AI) could play a key role in improving the running of hospital wards and disease management, according to the findings of new research.

The study, by Dr Robert Free at the National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre (BRC), suggests that using a package of digital 'building-blocks' to create clinical decision support programs would make it possible to create digital tools that help medical staff prioritise patient care and workloads more effectively.

The study, published in Frontiers in Digital Health outlines how a system of computer software building blocks, developed by the research team, could enable faster more effective disease management protocols for handling local admissions of community acquired pneumonia (CAP). It also explores how this approach could be applied across healthcare more generally.

Their building block system, Embeddable AI and State-based Understandable Logic (EASUL) can use historic data, electronic medical records and include algorithms to develop digital platforms that accommodate different stages of clinical care for patients and allow medical staff to examine this - including likely patient outcomes.

In the study, researchers modelled scenarios using existing patient data and consultations with teams of Specialist Pneumonia Intervention Nurses (SPIN) to test how a program built using EASUL could be used to help clinicians manage those admitted with CAP. The program was given the data of 52,471 adults admitted between April and June 2022, 630 of whom were diagnosed with CAP. The advice and information generated by the program was compared with the clinical risk assessments given by the SPIN team.

When tallied, EASUL risk assessment matched with the SPIN teams 49.4 % of the time. EASUL never rated any patient as low risk who had been rated as high risk by the clinical team. EASUL also identified 57 cases which, when reviewed by researchers, should have been rated as high risk but only recorded as low or moderate by clinical staff. The paper's authors stressed that the differences were likely due to individual clinical judgement where extensive risk assessment was not considered as clinically appropriate. Due to a lack of available information in the existing patient data it was not possible to include this element in the evaluation.

The researchers behind EASUL also believe another of its potential advantages is its flexible design. It allows for 'on the fly data', collected as treatment and research is carried out, to be easily included in the system. It has also been designed in a format that can potentially be integrated with existing digital clinical decision support systems.

As a result, EASUL could be adjusted to suit the needs of a variety of clinical settings. It is also designed to automatically adjust its calculation in case of missing data, meaning it could provide robust and relevant informatio to clinical staff in a variety of different situations.

Dr Robert Free, Lecturer in Health Data Science and principal investigator on the study said: "This is a very exciting development. Our proof-of-concept clinical system allowed us to demonstrate how our building block approach could deal with algorithms of varying complexities across the patient's care. Using EASUL we were able to include both simple risk scores and a pre-existing artificial intelligence model in a real-time data-driven workflow and then present it to clinicians - helping them make decisions about patients."

Dr Pranabhashis Haldar, a Senior Clinical Lecturer in the NIHR Leicester BRC's Respiratory Theme, and a contributor to the study, added "The flexible nature of our approach means it can be extended to support different data types, adaptive workflows including advanced artificial intelligence models and potentially mobile apps. Additionally, it could also be used to support patient directed healthcare actions, such as remote monitoring."

Dr Free concluded: "We believe that EASUL and similar approaches are important steps for making better use of health data from multiple sources and would help to strengthen trust and accountability in complex artificial intelligence enabled clinical decision support. However, we recognise that further research is needed before this can be rolled out into active clinical settings."

Free RC, Lozano Rojas D, Richardson M, Skeemer J, Small L, Haldar P, Woltmann G.
A data-driven framework for clinical decision support applied to pneumonia management.
Front Digit Health. 2023 Oct 9;5:1237146. doi: 10.3389/fdgth.2023.1237146

Most Popular Now

AI may Help Clinicians Personalize Treat…

Individuals with generalized anxiety disorder (GAD), a condition characterized by daily excessive worry lasting at least six months, have a high relapse rate even after receiving treatment. Artificial intelligence (AI)...

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

Can AI Help Detect Cognitive Impairment?

Mild cognitive impairment (MCI) can be an early indicator of Alzheimer's disease or dementia, so identifying those with cognitive issues early could lead to interventions and better outcomes. But diagnosing...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

AI can Open Up Beds in the ICU

At the height of the COVID-19 pandemic, hospitals frequently ran short of beds in intensive care units. But even earlier, ICUs faced challenges in keeping beds available. With an aging...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

Patients' Affinity for AI Messages …

In a Duke Health-led survey, patients who were shown messages written either by artificial intelligence (AI) or human clinicians indicated a preference for responses drafted by AI over a human...

New Research Explores How AI can Build T…

In today’s economy, many workers have transitioned from manual labor toward knowledge work, a move driven primarily by technological advances, and workers in this domain face challenges around managing non-routine...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...