Study Reveals Bias in AI Tools when Diagnosing Women's Health Issue

Machine learning algorithms designed to diagnose a common infection that affects women showed a diagnostic bias among ethnic groups, University of Florida researchers found.

While artificial intelligence (AI) tools offer great potential for improving health care delivery, practitioners and scientists warn of their risk for perpetuating racial inequities. Published Friday in the Nature journal Digital Medicine, this is the first paper to evaluate fairness among these tools in connection to a women's health issue.

"Machine learning can be a great tool in medical diagnostics, but we found it can show bias toward different ethnic groups," said Ruogu Fang, an associate professor in the J. Crayton Pruitt Family Department of Biomedical Engineering and the study's author. "This is alarming for women's health as there already are existing disparities that vary by ethnicity."

The researchers evaluated the fairness of machine learning in diagnosing bacterial vaginosis, or BV, a common condition affecting women of reproductive age, which has clear diagnostic differences among ethnic groups.

Fang and co-corresponding author Ivana Parker, both faculty members in the Herbert Wertheim College of Engineering, pulled data from 400 women, comprising 100 from each of the ethnic groups represented - white, Black, Asian, and Hispanic.

In investigating the ability of four machine learning models to predict BV in women with no symptoms, researchers say the accuracy varied among ethnicities. Hispanic women had the most false-positive diagnoses, and Asian women received the most false-negative.

"The models performed highest for white women and lowest for Asian women," said the Parker, an assistant professor of bioengineering. "This tells us machine learning methods are not treating ethnic groups equally well."

Parker said that while they were interested in understanding how AI tools predict disease for specific ethnicities, their study also helps medical scientists understand the factors associated with bacteria in women of varying ethnic backgrounds, which can lead to improved treatments.

BV, one of the most common vaginal infections, can cause discomfort and pain and happens when natural bacteria levels are out of balance. While there are symptoms associate with BV, many people have no symptoms, making it difficult to diagnose.

It doesn't often cause complications, but in some cases, BV can increase the risk of sexually transmitted infections, miscarriage, and premature births.

The researchers said their findings demonstrate the need for improved methods for building the AI tools to mitigate health care bias.

Celeste C, Ming D, Broce J, Ojo DP, Drobina E, Louis-Jacques AF, Gilbert JE, Fang R, Parker IK.
Ethnic disparity in diagnosing asymptomatic bacterial vaginosis using machine learning.
NPJ Digit Med. 2023 Nov 17;6(1):211. doi: 10.1038/s41746-023-00953-1

Most Popular Now

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...