Clinical Predictive Models Created by AI are Accurate but Study-Specific

In a recent study, scientists have been investigating the accuracy of AI models that predict whether people with schizophrenia will respond to antipsychotic medication. Statistical models from the field of artificial intelligence (AI) have great potential to improve decision-making related to medical treatment. However, data from medical treatment that can be used for training these models are not only rare, but also expensive. Therefore, the predictive accuracy of statistical models has so far only been demonstrated in a few data sets of limited size. In the current work, the scientists are investigating the potential of AI models and testing the accuracy of the prediction of treatment response to antipsychotic medication for schizophrenia in several independent clinical trials. The results of the new study, in which researchers from the Faculty of Medicine of the University of Cologne and Yale were involved, show that the models were able to predict patient outcomes with high accuracy within the trial in which they were developed. However, when used outside the original trial, they did not show better performance than random predictions. Pooling data across trials did not improve predictions either. The study 'Illusory generalizability of clinical prediction models' was published in Science.

The study was led by leading scientists from the field of precision psychiatry. This is an area of psychiatry in which data-related models, targeted therapies and suitable medications for individuals or patient groups are supposed to be determined. "Our goal is to use novel models from the field of AI to treat patients with mental health problems in a more targeted manner," says Dr Joseph Kambeitz, Professor of Biological Psychiatry at the Faculty of Medicine of the University of Cologne and the University Hospital Cologne. "Although numerous initial studies prove the success of such AI models, a demonstration of the robustness of these models has not yet been made." And this safety is of great importance for everyday clinical use. "We have strict quality requirements for clinical models and we also have to ensure that models in different contexts provide good predictions," says Kambeitz. The models should provide equally good predictions, whether they are used in a hospital in the USA, Germany or Chile.

The results of the study show that a generalization of predictions of AI models across different study centres cannot be ensured at the moment. This is an important signal for clinical practice and shows that further research is needed to actually improve psychiatric care. In ongoing studies, the researchers hope to overcome these obstacles. In cooperation with partners from the USA, England and Australia, they are working on the one hand to examine large patient groups and data sets in order to improve the accuracy of AI models and on the use of other data modalities such as biological samples or new digital markers such as language, motion profiles and smartphone usage.

Chekroud AM, Hawrilenko M, Loho H, Bondar J, Gueorguieva R, Hasan A, Kambeitz J, Corlett PR, Koutsouleris N, Krumholz HM, Krystal JH, Paulus M.
Illusory generalizability of clinical prediction models.
Science. 2024 Jan 12;383(6679):164-167. doi: 10.1126/science.adg8538

Most Popular Now

AI may Help Clinicians Personalize Treat…

Individuals with generalized anxiety disorder (GAD), a condition characterized by daily excessive worry lasting at least six months, have a high relapse rate even after receiving treatment. Artificial intelligence (AI)...

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Can AI Help Detect Cognitive Impairment?

Mild cognitive impairment (MCI) can be an early indicator of Alzheimer's disease or dementia, so identifying those with cognitive issues early could lead to interventions and better outcomes. But diagnosing...

AI can Open Up Beds in the ICU

At the height of the COVID-19 pandemic, hospitals frequently ran short of beds in intensive care units. But even earlier, ICUs faced challenges in keeping beds available. With an aging...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

Patients' Affinity for AI Messages …

In a Duke Health-led survey, patients who were shown messages written either by artificial intelligence (AI) or human clinicians indicated a preference for responses drafted by AI over a human...

New Research Explores How AI can Build T…

In today’s economy, many workers have transitioned from manual labor toward knowledge work, a move driven primarily by technological advances, and workers in this domain face challenges around managing non-routine...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...