AI in Personalized Cancer Medicine: New Therapies Require Flexible and Safe Approval Conditions

The application of AI in precision oncology has so far been largely confined to the development of new drugs and had only limited impact on the personalisation of therapies. New AI-based approaches are increasingly being applied to the planning and implementation of personalised drug and cell therapies. Therapies can be adapted to individual patients' needs - for example to improve efficacy and dosage, reduce toxicity, develop combination therapies and even personalise preclinical cell therapies regarding their molecular properties.

AI-based healthcare is developing continuously and with increasing speed. It can support doctors with decision-making and therapy planning as well as in early multi-cancer precision diagnostics. Other potential applications include the design of new types of personalised medical products, drug companion apps for patients and the use of so-called "digital twins". The latter use patient data in almost real-time to enable more precise diagnosis by means of simulation and modelling and to adapt treatments to individual requirements. Advancing these products through regulatory pathways is enormously challenging. They combine technologies governed by different legal frameworks and regulatory bodies and are so novel that they are not well dealt with in current legislation. It can already be anticipated that the current approval conditions will make rapid clinical application difficult.

Making approval processes more agile in the future

The publication identifies two large challenges: legislators and regulatory bodies underestimate the importance of the developing technologies in this area as well as the extent of required regulatory change to make approval processes more agile in the future. "The current regulations are a de facto blocker to AI-based personalised medicine. A fundamental change is needed to solve this problem," says Stephen Gilbert, Professor of Medical Device Regulatory Science at the Else Kröner Fresenius Center for Digital Health at TU Dresden and University Hospital Carl Gustav Carus Dresden. The researchers therefore suggest, among other things, updating risk-benefit assessments for highly personalised treatment approaches. Solutions already established in the US could also be adopted in the EU for certain classes of low-risk decision support for doctors. The authors further suggest approaches to allow digital tools on market to be safety adaptable in a more flexible manner and to establish suitable test platforms for on-market monitoring. Multi-layered approaches would help to spread the load of oversight and make evaluation more relevant to patient safety.

Employees from the following institutions were involved in the publication: EKFZ for Digital Health at TU Dresden, University Hospital Carl Gustav Carus Dresden, Center for Scalable Data Analytics and Artificial Intelligence Dresden/Leipzig, Fraunhofer Institute for Cell Therapy and Immunology IZI (Leipzig), Institute for Clinical Immunology at University of Leipzig, University Clinic Marburg as well as the Université Paris-Saclay (Paris/France) and the life science consulting company ProductLifeGroup.

Bouchra Derraz, Gabriele Breda, Christoph Kaempf, Franziska Baenke, Fabienne Cotte, Kristin Reiche, Ulrike Köhl, Jakob Nikolas Kather, Deborah Eskenazy, Stephen Gilbert.
New regulatory thinking is needed for AI-based personalised drug and cell therapies in precision oncology.
npj Precision Oncology, 2024. doi: 10.1038/s41698-024-00517-w

Most Popular Now

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...

AI Analysis of PET/CT Images can Predict…

Dr. Watanabe and his teams from Niigata University have revealed that PET/CT image analysis using artificial intelligence (AI) can predict the occurrence of interstitial lung disease, known as a serious...