Chapman Scientists Code ChatGPT to Design New Medicine

Generative artificial intelligence platforms, from ChatGPT to Midjourney, grabbed headlines in 2023. But GenAI can do more than create collaged images and help write emails - it can also design new drugs to treat disease.

Today, scientists use advanced technology to design new synthetic drug compounds with the right properties and characteristics, also known as "de novo drug design." However, current methods can be labor-, time-, and cost-intensive.

Inspired by ChatGPT's popularity and wondering if this approach could speed up the drug design process, scientists in the Schmid College of Science and Technology at Chapman University in Orange, California, decided to create their own genAI model, detailed in the new paper, "De Novo Drug Design using Transformer-based Machine Translation and Reinforcement Learning of Adaptive Monte-Carlo Tree Search," to be published in the journal Pharmaceuticals. Dony Ang, Cyril Rakovski, and Hagop Atamian coded a model to learn a massive dataset of known chemicals, how they bind to target proteins, and the rules and syntax of chemical structure and properties writ large.

The end result can generate countless unique molecular structures that follow essential chemical and biological constraints and effectively bind to their targets - promising to vastly accelerate the process of identifying viable drug candidates for a wide range of diseases, at a fraction of the cost.

To create the breakthrough model, researchers integrated two cutting-edge AI techniques for the first time in the fields of bioinformatics and cheminformatics: the well-known "Encoder-Decoder Transformer architecture" and "Reinforcement Learning via Monte Carlo Tree Search" (RL-MCTS). The platform, fittingly named "drugAI," allows users to input a target protein sequence (for instance, a protein typically involved in cancer progression). DrugAI, trained on data from the comprehensive public database BindingDB, can generate unique molecular structures from scratch, and then iteratively refine candidates, ensuring finalists exhibit strong binding affinities to respective drug targets - crucial for the efficacy of potential drugs. The model identifies 50-100 new molecules likely to inhibit these particular proteins.

"This approach allows us to generate a potential drug that has never been conceived of," Dr. Atamian said. "It's been tested and validated. Now, we’re seeing magnificent results."

Researchers assessed the molecules drugAI generated along several criteria, and found drugAI's results were of similar quality to those from two other common methods, and in some cases, better. They found that drugAI's candidate drugs had a validity rate of 100% - meaning none of the drugs generated were present in the training set. DrugAI's candidate drugs were also measured for drug-likeness, or the similarity of a compound’s properties to those of oral drugs, and candidate drugs were at least 42% and 75% higher than other models. Plus, all drugAI-generated molecules exhibited strong binding affinities to respective targets, comparable to those identified via traditional virtual screening approaches.

Ang, Rakovski and Atamian also wanted to see how drugAI’s results for a specific disease compared to existing known drugs for that disease. In a different experiment, screening methods generated a list of natural products that inhibited COVID-19 proteins; drugAI generated a list of novel drugs targeting the same protein to compare their characteristics. They compared drug-likeness and binding affinity between the natural molecules and drugAI's, and found similar measurements in both - but drugAI was able to identify these in a much quicker and less expensive way.

Plus, the scientists designed the algorithm to have a flexible structure that allows future researchers to add new functions. "That means you're going to end up with more refined drug candidates with an even higher probability of ending up as a real drug," said Dr. Atamian. "We're excited for the possibilities moving forward."

Ang D, Rakovski C, Atamian HS.
De Novo Drug Design Using Transformer-Based Machine Translation and Reinforcement Learning of an Adaptive Monte Carlo Tree Search.
Pharmaceuticals. 2024; 17(2):161. doi: 10.3390/ph17020161

Most Popular Now

AI may Help Clinicians Personalize Treat…

Individuals with generalized anxiety disorder (GAD), a condition characterized by daily excessive worry lasting at least six months, have a high relapse rate even after receiving treatment. Artificial intelligence (AI)...

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Can AI Help Detect Cognitive Impairment?

Mild cognitive impairment (MCI) can be an early indicator of Alzheimer's disease or dementia, so identifying those with cognitive issues early could lead to interventions and better outcomes. But diagnosing...

AI can Open Up Beds in the ICU

At the height of the COVID-19 pandemic, hospitals frequently ran short of beds in intensive care units. But even earlier, ICUs faced challenges in keeping beds available. With an aging...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

Patients' Affinity for AI Messages …

In a Duke Health-led survey, patients who were shown messages written either by artificial intelligence (AI) or human clinicians indicated a preference for responses drafted by AI over a human...

New Research Explores How AI can Build T…

In today’s economy, many workers have transitioned from manual labor toward knowledge work, a move driven primarily by technological advances, and workers in this domain face challenges around managing non-routine...

AI Tool Helps Predict Who will Benefit f…

A study led by UCLA investigators shows that artificial intelligence (AI) could play a key role in improving treatment outcomes for men with prostate cancer by helping physicians determine who...

AI in Healthcare: How do We Get from Hyp…

The Highland Marketing advisory board met to consider the government's enthusiasm for AI. To date, healthcare has mostly experimented with decision support tools, and their impact on the NHS and...

New AI Tool Accelerates Disease Treatmen…

University of Virginia School of Medicine scientists have created a computational tool to accelerate the development of new disease treatments. The tool goes beyond current artificial intelligence (AI) approaches by...