Machine Learning Promises to Accelerate Metabolism Research

A new study shows that it is possible to use machine learning and statistics to address a problem that has long hindered the field of metabolomics: large variations in the data collected at different sites.

"We don't always know the source of the variation," said Daniel Raftery, professor of anesthesiology and pain medicine at the University of Washington School of Medicine in Seattle. "It could be because the subjects are different with different genetics, diets and environmental exposures. Or it could be the way samples were collected and processed."

Raftery and his research colleagues wanted to see if machine learning - a form of artificial intelligence that uses computer algorithms to process large volumes of historical data and to identify data patterns - could reduce this variation between data from different sites without obscuring important differences.

"We wanted to bring these mismatched datasets together so the findings of different studies could be compared or combined for further analysis," Raftery said.

He led the project with Dabao Zhang and Min Zhang, formerly at Purdue University and now professors of epidemiology & biostatistics at University of California, Irvine Public Health. Danni Liu, a Ph.D. student at Purdue, was lead author of the paper, which appears in the Feb.12 issue of PNAS, the Proceedings of the National Academy of Sciences.

Raftery is an investigator at the UW Mitochondria and Metabolism Center, based at UW Medicine South Lake Union in Seattle.

The term metabolomics relates to metabolism, a word that describes chemical reactions our cells perform to maintain life. These include reactions that break down food to harvest energy and obtain the raw materials cells need for growth and repair, reactions that involve the assembly of cellular components needed for life, and reactions involved in the disassembly of damaged or unneeded components so they can be recycled, discarded or used as fuel.

The small chemicals produced by these metabolic processes are called metabolites. Metabolite levels reveal what chemical reactions are going on within a cell, tissue, organ or organism at a given moment and how those reactions may change over time.

Metabolomics is the study of metabolites and the processes that produce them.

This information helps medical scientists better understand not only how cells maintain normal function but also what might be going wrong when people fall ill. This knowledge could lead to new ways to diagnose, prevent and treat disease, Raftery said.

In the new study, the researchers built machine-learning models to identify factors that were driving the differences between datasets. The models accounted for demographic differences in the study populations, such as age and sex, and used the information contained in other metabolites to explain the observed differences.

The researchers found that their approach reduced the variation between datasets by more than 95% without obscuring meaningful differences, such as those that naturally occur between men and women.

"We've shown that our approach has the potential to reduce unwanted variance seen in metabolomic data while retaining metabolomic signals of interest," Raftery said.

The group plans to expand its studies with the aim of providing a deeper understanding of normal metabolism and identifying biomarkers of abnormal metabolism that can be a sign of disease.

Liu D, Nagana Gowda GA, Jiang Z, Alemdjrodo K, Zhang M, Zhang D, Raftery D.
Modeling blood metabolite homeostatic levels reduces sample heterogeneity across cohorts.
Proc Natl Acad Sci U S A. 2024 Feb 20;121(8):e2307430121. doi: 10.1073/pnas.2307430121

Most Popular Now

Most Advanced Artificial Touch for Brain…

For the first time ever, a complex sense of touch for individuals living with spinal cord injuries is a step closer to reality. A new study published in Science, paves...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

Using AI to Uncover Hospital Patients�…

Across the United States, no hospital is the same. Equipment, staffing, technical capabilities, and patient populations can all differ. So, while the profiles developed for people with common conditions may...

New AI Tool Uses Routine Blood Tests to …

Doctors around the world may soon have access to a new tool that could better predict whether individual cancer patients will benefit from immune checkpoint inhibitors - a type of...

New Method Tracks the 'Learning Cur…

Introducing Annotatability - a powerful new framework to address a major challenge in biological research by examining how artificial neural networks learn to label genomic data. Genomic datasets often contain...

Picking the Right Doctor? AI could Help

Years ago, as she sat in waiting rooms, Maytal Saar-Tsechansky began to wonder how people chose a good doctor when they had no way of knowing a doctor's track record...

From Text to Structured Information Secu…

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected...

AI Innovation Unlocks Non-Surgical Way t…

Researchers have developed an artificial intelligence (AI) model to detect the spread of metastatic brain cancer using MRI scans, offering insights into patients’ cancer without aggressive surgery. The proof-of-concept study, co-led...

Deep Learning Model Helps Detect Lung Tu…

A new deep learning model shows promise in detecting and segmenting lung tumors, according to a study published in Radiology, a journal of the Radiological Society of North America (RSNA)...

One of the Largest Global Surveys of Soc…

As leaders gather for the World Economic Forum Annual Meeting 2025 in Davos, Leaps by Bayer, the impact investing arm of Bayer, and Boston Consulting Group (BCG) announced the launch...

New Study Reveals AI's Transformati…

Intensive care units (ICUs) face mounting pressure to effectively manage resources while delivering optimal patient care. Groundbreaking research published in the INFORMS journal Information Systems Research highlights how a novel...