Machine Learning Promises to Accelerate Metabolism Research

A new study shows that it is possible to use machine learning and statistics to address a problem that has long hindered the field of metabolomics: large variations in the data collected at different sites.

"We don't always know the source of the variation," said Daniel Raftery, professor of anesthesiology and pain medicine at the University of Washington School of Medicine in Seattle. "It could be because the subjects are different with different genetics, diets and environmental exposures. Or it could be the way samples were collected and processed."

Raftery and his research colleagues wanted to see if machine learning - a form of artificial intelligence that uses computer algorithms to process large volumes of historical data and to identify data patterns - could reduce this variation between data from different sites without obscuring important differences.

"We wanted to bring these mismatched datasets together so the findings of different studies could be compared or combined for further analysis," Raftery said.

He led the project with Dabao Zhang and Min Zhang, formerly at Purdue University and now professors of epidemiology & biostatistics at University of California, Irvine Public Health. Danni Liu, a Ph.D. student at Purdue, was lead author of the paper, which appears in the Feb.12 issue of PNAS, the Proceedings of the National Academy of Sciences.

Raftery is an investigator at the UW Mitochondria and Metabolism Center, based at UW Medicine South Lake Union in Seattle.

The term metabolomics relates to metabolism, a word that describes chemical reactions our cells perform to maintain life. These include reactions that break down food to harvest energy and obtain the raw materials cells need for growth and repair, reactions that involve the assembly of cellular components needed for life, and reactions involved in the disassembly of damaged or unneeded components so they can be recycled, discarded or used as fuel.

The small chemicals produced by these metabolic processes are called metabolites. Metabolite levels reveal what chemical reactions are going on within a cell, tissue, organ or organism at a given moment and how those reactions may change over time.

Metabolomics is the study of metabolites and the processes that produce them.

This information helps medical scientists better understand not only how cells maintain normal function but also what might be going wrong when people fall ill. This knowledge could lead to new ways to diagnose, prevent and treat disease, Raftery said.

In the new study, the researchers built machine-learning models to identify factors that were driving the differences between datasets. The models accounted for demographic differences in the study populations, such as age and sex, and used the information contained in other metabolites to explain the observed differences.

The researchers found that their approach reduced the variation between datasets by more than 95% without obscuring meaningful differences, such as those that naturally occur between men and women.

"We've shown that our approach has the potential to reduce unwanted variance seen in metabolomic data while retaining metabolomic signals of interest," Raftery said.

The group plans to expand its studies with the aim of providing a deeper understanding of normal metabolism and identifying biomarkers of abnormal metabolism that can be a sign of disease.

Liu D, Nagana Gowda GA, Jiang Z, Alemdjrodo K, Zhang M, Zhang D, Raftery D.
Modeling blood metabolite homeostatic levels reduces sample heterogeneity across cohorts.
Proc Natl Acad Sci U S A. 2024 Feb 20;121(8):e2307430121. doi: 10.1073/pnas.2307430121

Most Popular Now

Commission Joins Forces with Venture Cap…

The Commission has launched a Trusted Investors Network bringing together a group of investors ready to co-invest in innovative deep-tech companies in Europe together with the EU. The Union's investment...

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...