Researchers Evaluate Accuracy of Online Health News Using Easily Accessible AI

It can be challenging to gauge the quality of online news - questioning if it is real or if it is fake. When it comes to health news and press releases about medical treatments and procedures the issue can be even more complex, especially if the story is not complete and still doesn’t necessarily fall into the category of fake news. To help identify the stories with inflated claims, inaccuracies and possible associated risks, researchers at the University of New Hampshire developed a new machine learning model, an application of artificial intelligence, that news services, like social media outlets, could easily use to better screen medical news stories for accuracy.

"The way most people think about fake news is something that's completely fabricated, but, especially in healthcare, it doesn't need to be fake. It could be that maybe they're not mentioning something," said Ermira Zifla, assistant professors of decision sciences at UNH's Peter T. Paul College of Business and Economics. "In the study, we're not making claims about the intent of the news organizations that put these out. But if things are left out, there should be a way to look at that."

Zifla and study co-author Burcu Eke Rubini, assistant professors of decision sciences, found in their research, published in Decision Support Systems, that since most people don’t have the medical expertise to understand the complexities of the news, the machine learning models they developed outperformed the evaluations of laypeople in assessing the quality of health stories. They used data from Health News Review that included news stories and press releases on new healthcare treatments published in various outlets from 2013 to 2018. The articles had already been evaluated by a panel of healthcare experts - medical doctors, healthcare journalists and clinical professors - using ten different evaluation criteria the experts had developed. The criteria included cost and benefits of the treatment or test, any possible harm, the quality of arguments, the novelty and availability of the procedure and the independence of the sources. The researchers then developed an algorithm based on the same expert criteria, and trained the machine models to classify each aspect of the news story, matching that criteria as "satisfactory" or "not satisfactory".

The model's performance was then compared against layperson evaluations obtained through a separate survey where participants rated the same articles as "satisfactory" or "not satisfactory" based on the same criteria. The survey revealed an "optimism bias," with most of the 254 participants rating articles as satisfactory, markedly different from the model's more critical assessments.

Researchers stress that they are by no means looking to replace expert opinion but are hoping to start a conversation about evaluating news based on multiple criteria and offering an easily accessible and low-cost alternative via open-source software to better evaluate health news.

Ermira Zifla, Burcu Eke Rubini.
Multi-criteria evaluation of health news stories.
Decision Support Systems, 2024. doi: 10.1016/j.dss.2024.114187

Most Popular Now

Commission Joins Forces with Venture Cap…

The Commission has launched a Trusted Investors Network bringing together a group of investors ready to co-invest in innovative deep-tech companies in Europe together with the EU. The Union's investment...

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

New Research Shows Promise and Limitatio…

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied...

G-Cloud 14 Makes it Easier for NHS to Bu…

NHS organisations will be able to save valuable time and resource in the procurement of technologies that can make a significant difference to patient experience, in the latest iteration of...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

Hampshire Emergency Departments Digitise…

Emergency departments in three hospitals across Hampshire Hospitals NHS Foundation Trust have deployed Alcidion's Miya Emergency, digitising paper processes, saving clinical teams time, automating tasks, and providing trust-wide visibility of...

MEDICA HEALTH IT FORUM: Success in Maste…

11 - 14 November 2024, Düsseldorf, Germany. How can innovations help to master the great challenges and demands with which healthcare is confronted across international borders? This central question will be...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...