AI-Based App can Help Physicians Find Skin Melanoma

A mobile app that uses artificial intelligence, AI, to analyse images of suspected skin lesions can diagnose melanoma with very high precision. This is shown in a study led from Linköping University in Sweden where the app has been tested in primary care. The results have been published in the British Journal of Dermatology.

"Our study is the first in the world to test an AI-based mobile app for melanoma in primary care in this way. A great many studies have been done on previously collected images of skin lesions and those studies relatively agree that AI is good at distinguishing dangerous from harmless ones. We were quite surprised by the fact that no one had done a study on primary care patients," says Magnus Falk, senior associate professor at the Department of Health, Medicine and Caring Sciences at Linköping University, specialist in general practice at Region Östergötland, who led the current study.

Melanoma can be difficult to differentiate from other skin changes, even for experienced physicians. However, it is important to detect melanoma as early as possible, as it is a serious type of skin cancer.

There is currently no established AI-based support for assessing skin lesions in Swedish healthcare.

"Primary care physicians encounter many skin lesions every day and with limited resources need to make decisions about treatment in cases of suspected skin melanoma. This often results in an abundance of referrals to specialists or the removal of skin lesions, which in the majority of cases turn out to be harmless. We wanted to see if the AI support tool in the app could perform better than primary care physicians when it comes to identifying pigmented skin lesions as dangerous or not, in comparison with the final diagnosis," says Panos Papachristou, researcher affiliated with Karolinska Institutet and specialist in general practice, main author of the study and co-founder of the company that developed the app.

And the results are promising.

"First of all, the app missed no melanoma. This disease is so dangerous that it's essential not to miss it. But it's almost equally important that the AI decision support tool could acquit many suspected skin lesions and determine that they were harmless," says Magnus Falk.

In the study, primary care physicians followed the usual procedure for diagnosing suspected skin tumours. If the physicians suspected melanoma, they either referred the patient to a dermatologist for diagnosis, or the skin lesion was cut away for tissue analysis and diagnosis.

Only after the physician decided how to handle the suspected melanoma did they use the AI-based app. This involves the physician taking a picture of the skin lesion with a mobile phone equipped with an enlargement lens called a dermatoscope. The app analyses the image and provides guidance on whether or not the skin lesion appears to be melanoma.

To find out how well the AI-based app worked as a decision support tool, the researchers compared the app’s response to the diagnoses made by the regular diagnostic procedure.

Of the more than 250 skin lesions examined, physicians found 11 melanomas and 10 precursors of cancer, known as in situ melanoma. The app found all the melanomas, and missed only one precursor. In cases where the app responded that a suspected lesion was not a melanoma, including in situ melanoma, there was a 99.5 percent probability that this was correct.

"It seems that this method could be useful. But in this study, physicians weren’t allowed to let their decision be influenced by the app’s response, so we don’t know what happens in practice if you use an AI-based decision support tool. So even if this is a very positive result, there is uncertainty and we need to continue to evaluate the usefulness of this tool with scientific studies," says Magnus Falk.

The researchers now plan to proceed with a large follow-up primary care study in several countries, where use of the app as an active decision support tool will be compared to not using it at all.

The study was funded with support from Region Östergötland and the Analytic Imaging Diagnostics Arena, AIDA, in Linköping, which is funded by the strategic innovation programme Medtech4Health.

Papachristou P, Söderholm M, Pallon J, Taloyan M, Polesie S, Paoli J, Anderson CD, Falk M.
Evaluation of an artificial intelligence-based decision support for detection of cutaneous melanoma in primary care - a prospective, real-life, clinical trial.
Br J Dermatol. 2024 Jan 17:ljae021. doi: 10.1093/bjd/ljae021

Most Popular Now

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...

Shape-Changing Device Helps Visually Imp…

Researchers from Imperial College London, working with the company MakeSense Technology and the charity Bravo Victor, have developed a shape-changing device called Shape that helps people with visual impairment navigate...