Powerful New AI can Predict People's Attitudes to Vaccines

A powerful new tool in artificial intelligence is able to predict whether someone is willing to be vaccinated against COVID-19.

The predictive system uses a small set of data from demographics and personal judgments such as aversion to risk or loss.

The findings frame a new technology that could have broad applications for predicting mental health and result in more effective public health campaigns.

A team led by researchers at the University of Cincinnati and Northwestern University created a predictive model using an integrated system of mathematical equations describing the lawful patterns in reward and aversion judgment with machine learning.

"We used a small number of variables and minimal computational resources to make predictions," said lead author Nicole Vike, a senior research associate in UC's College of Engineering and Applied Science.

"COVID-19 is unlikely to be the last pandemic we see in the next decades. Having a new form of AI for prediction in public health provides a valuable tool that could help prepare hospitals for predicting vaccination rates and consequential infection rates."

The study was published in the Journal of Medical Internet Research Public Health and Surveillance.

Researchers surveyed 3,476 adults across the United States in 2021 during the COVID-19 pandemic. At the time of the survey, the first vaccines had been available for more than a year.

Respondents provided information such as where they live, income, highest education level completed, ethnicity and access to the internet. The respondents’ demographics mirrored those of the United States based on U.S. Census Bureau figures.

Participants were asked if they had received either of the available COVID-19 vaccines. About 73% of respondents said they were vaccinated, slightly more than the 70% of the nation's population that had been vaccinated in 2021.

Further, they were asked if they routinely followed four recommendations designed to prevent the spread of the virus: wearing a mask, social distancing, washing their hands and not gathering in large groups.

Participants were asked to rate how much they liked or disliked a randomly sequenced set of 48 pictures on a seven-point scale of 3 to -3. The pictures were from the International Affective Picture Set, a large set of emotionally evocative color photographs, in six categories: sports, disasters, cute animals, aggressive animals, nature and food.

Vike said the goal of this exercise is to quantify mathematical features of people's judgments as they observe mildly emotional stimuli. Measures from this task include concepts familiar to behavioral economists - or even people who gamble - such aversion to risk (the point at which someone is willing to accept potential loss for a potential reward) and aversion to loss. This is the willingness to avoid risk by, for example, obtaining insurance.

"The framework by which we judge what is rewarding or aversive is fundamental to how we make medical decisions," said co-senior author Hans Breiter, a professor of computer science at UC. "A seminal paper in 2017 hypothesized the existence of a standard model of the mind. Using a small set of variables from mathematical psychology to predict medical behavior would support such a model. The work of this collaborative team has provided such support and argues that the mind is a set of equations akin to what is used in particle physics."

The judgment variables and demographics were compared between respondents who were vaccinated and those who were not. Three machine learning approaches were used to test how well the respondents’ judgment, demographics and attitudes toward COVID-19 precautions predicted whether they would get the vaccine.

The study demonstrates that artificial intelligence can make accurate predictions about human attitudes with surprisingly little data or reliance on expensive and time-consuming clinical assessments.

"We found that a small set of demographic variables and 15 judgment variables predict vaccine uptake with moderate to high accuracy and high precision," the study said. "In an age of big-data machine learning approaches, the current work provides an argument for using fewer but more interpretable variables."

"The study is anti-big-data," said co-senior author Aggelos Katsaggelos, an endowed professor of electrical engineering and computer science at Northwestern University. "It can work very simply. It doesn't need super-computation, it's inexpensive and can be applied with anyone who has a smartphone. We refer to it as computational cognition AI. It is likely you will be seeing other applications regarding alterations in judgment in the very near future."

Vike NL, Bari S, Stefanopoulos L, Lalvani S, Kim BW, Maglaveras N, Block M, Breiter HC, Katsaggelos AK.
Predicting COVID-19 Vaccination Uptake Using a Small and Interpretable Set of Judgment and Demographic Variables: Cross-Sectional Cognitive Science Study.
JMIR Public Health Surveill. 2024 Mar 18;10:e47979. doi: 10.2196/47979

Most Popular Now

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...

Shape-Changing Device Helps Visually Imp…

Researchers from Imperial College London, working with the company MakeSense Technology and the charity Bravo Victor, have developed a shape-changing device called Shape that helps people with visual impairment navigate...