AI for Real-Rime, Patient-Focused Insight

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT.

Covered recently in the prestigious journal Nature Medicine, BiomedGPT is a new a new type of artificial intelligence (AI) designed to support a wide range of medical and scientific tasks. This new study, conducted in collaboration with multiple institutions, is described in the article as "the first open-source and lightweight vision–language foundation model, designed as a generalist capable of performing various biomedical tasks."

"This work combines two types of AI into a decision support tool for medical providers," explains Lichao Sun, an assistant professor of computer science and engineering at Lehigh University and a lead author of the study. "One side of the system is trained to understand biomedical images, and one is trained to understand and assess biomedical text. The combination of these allows the model to tackle a wide range of biomedical challenges, using insight gleaned from databases of biomedical imagery and from the analysis and synthesis of scientific and medical research reports."

The key innovation described in the August 7 Nature Medicine article, “A generalist vision–language foundation model for diverse biomedical tasks,” is that this AI model doesn’t need to be specialized for each task. Typically, AI systems are trained for specific jobs, like recognizing tumors in X-rays or summarizing medical papers. However, this new model can handle many different tasks using the same underlying technology. This versatility makes it a "generalist" model - and a powerful new tool in the hands of medical providers.

"BiomedGPT is based on foundation models, a recent development in AI," says Sun. "Foundation models are large, pre-trained AI systems that can be adapted to various tasks with minimal additional training. The generalist model described in the article has been trained on vast amounts of biomedical data, including images and text, enabling it to perform well across different applications."

"By evaluating 25 datasets across 9 biomedical tasks and different modalities," says Kai Zhang, a Lehigh PhD student advised by Sun who serves as first author of the Nature article, "BiomedGPT achieved 16 state-of-the-art results. A human evaluation of BiomedGPT on three radiology tasks showcased the model’s robust predictive abilities."

Zhang says that he is proud that the open-source codebase is available for other researchers to use as a springboard to drive further development and adoption.

The team reports that the technology behind BiomedGPT may one day help doctors by interpreting complex medical images, assist researchers by analyzing scientific literature, or even aid in drug discovery by predicting how molecules behave.

"The potential impact of such technology is significant," Zhang says, "as it could streamline many aspects of healthcare and research, making them faster and more accurate. Our method demonstrates that effective training with diverse data can lead to more practical biomedical AI for improving diagnosis and workflow efficiency."

A crucial step in the process was validation of the model's effectiveness and applicability in real-world healthcare settings.

"Clinical testing involves applying the AI model to real patient data to assess its accuracy, reliability, and safety," Sun says. "This testing ensures that the model performs well across different scenarios. The outcomes of these tests helped refine the model, demonstrating its potential to improve clinical decision-making and patient care."

Massachusetts General Hospital (MGH), a founding member of the Mass General Brigham healthcare system and teaching affiliate of Harvard Medical School, played a crucial role in the development and validation of the BiomedGPT model. The institution's involvement primarily focused on providing clinical expertise and facilitating the evaluation of the model's effectiveness in real-world healthcare settings. For instance, the model was tested with radiologists at MGH, where it demonstrated superior performance in tasks like visual question answering and radiology report generation. This collaboration helped ensure that the model was both accurate and practical for clinical use.

Other contributors to BiomedGPT include researchers from University of Georgia, Samsung Research America, University of Pennsylvania, Stanford University, University of Central Florida, UC-Santa Cruz, University of Texas-Health, Children’s Hospital of Philadelphia, and the Mayo Clinic.

"This research is highly interdisciplinary and collaborative," says Sun. "The research involves expertise from multiple fields, including computer science, medicine, radiology, and biomedical engineering. Each author contributes specialized knowledge necessary to develop, test, and validate the model across various biomedical tasks. Large-scale projects like this often require access to diverse datasets and computational resources, along with access to skills in algorithm development, model training, evaluation, and application to real-world scenarios, as well as clinical testing and validation.

"This was a true team effort," he says. "Creating something that can truly help the medical community improve patient outcomes across a wide range of issues is a very complex challenge. With such complexity, collaboration is key to creating impact through the application of science and engineering."

Zhang K, Zhou R, Adhikarla E, Yan Z, Liu Y, Yu J, Liu Z, Chen X, Davison BD, Ren H, Huang J, Chen C, Zhou Y, Fu S, Liu W, Liu T, Li X, Chen Y, He L, Zou J, Li Q, Liu H, Sun L.
A generalist vision-language foundation model for diverse biomedical tasks.
Nat Med. 2024 Aug 7. doi: 10.1038/s41591-024-03185-2

Most Popular Now

AI System Helps Doctors Identify Patient…

A new study from Vanderbilt University Medical Center shows that clinical alerts driven by artificial intelligence (AI) can help doctors identify patients at risk for suicide, potentially improving prevention efforts...

Smartphone App can Help Reduce Opioid Us…

Patients with opioid use disorder can reduce their days of opioid use and stay in treatment longer when using a smartphone app as supportive therapy in combination with medication, a...

AI's New Move: Transforming Skin Ca…

Pioneering research has unveiled a powerful new tool in the fight against skin cancer, combining cutting-edge artificial intelligence (AI) with deep learning to enhance the precision of skin lesion classification...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...

AI can Improve Ovarian Cancer Diagnoses

A new international study led by researchers at Karolinska Institutet in Sweden shows that AI-based models can outperform human experts at identifying ovarian cancer in ultrasound images. The study is...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

Using AI to Uncover Hospital Patients�…

Across the United States, no hospital is the same. Equipment, staffing, technical capabilities, and patient populations can all differ. So, while the profiles developed for people with common conditions may...

New AI Tool Uses Routine Blood Tests to …

Doctors around the world may soon have access to a new tool that could better predict whether individual cancer patients will benefit from immune checkpoint inhibitors - a type of...

New Method Tracks the 'Learning Cur…

Introducing Annotatability - a powerful new framework to address a major challenge in biological research by examining how artificial neural networks learn to label genomic data. Genomic datasets often contain...

Picking the Right Doctor? AI could Help

Years ago, as she sat in waiting rooms, Maytal Saar-Tsechansky began to wonder how people chose a good doctor when they had no way of knowing a doctor's track record...

From Text to Structured Information Secu…

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected...

AI Innovation Unlocks Non-Surgical Way t…

Researchers have developed an artificial intelligence (AI) model to detect the spread of metastatic brain cancer using MRI scans, offering insights into patients’ cancer without aggressive surgery. The proof-of-concept study, co-led...