Using AI to Uncover Hospital Patients' Long COVID Care Needs

Across the United States, no hospital is the same. Equipment, staffing, technical capabilities, and patient populations can all differ. So, while the profiles developed for people with common conditions may seem universal, the reality is that there are nuances that require individual attention, both in the make-up of the patients being seen and the situations of the hospitals providing their care.

New research shows that artificial intelligence can potentially help improve care overall by combing through different hospitals' data to create more refined groups of patients similar to the local populations that hospitals are actually seeing. AI can help pinpoint typical care needs, such as what specific departments and care teams are required to meet patient needs. Led by researchers at the Perelman School of Medicine at the University of Pennsylvania, the project - whose findings were published in Cell Patterns - analyzed electronic health records of long-COVID patients, revealing a collection of four patient sub-populations - such as those with asthma or mental health conditions - and their specific needs.

"Existing studies pool data from multiple hospitals but fail to consider differences in patient populations, and that limits the ability to apply findings to local decision-making," said Yong Chen, PhD, a professor of Biostatistics and the senior author of the study. "Our work moves toward providing actionable insights that can be tailored to individual institutions and can further the goal of offering more adaptive, personalized care."

The study team used a machine learning artificial intelligence technique called "latent transfer learning", to examine de-identified data on long-COVID patients pulled from eight different pediatric hospitals. Through this, they were able to call out four sub-populations of patients who had pre-existing health conditions. These four included:

  • Mental health conditions, including anxiety, depression, neurodevelopmental disorders, and attention deficit hyperactivity disorder
  • Atopic/allergic chronic conditions, such as asthma or allergies
  • Non-complex chronic conditions, like vision issues or insomnia
  • Complex chronic conditions, including those with heart or neuromuscular disorders

With those sub-populations identified, the system was also able to track what care patients required across the hospital, pointing toward updated profiles that would allow hospitals to better address increases in different patient types.

"Without identifying these distinct subpopulations, clinicians and hospitals would likely provide a one-size-fits-all approach to follow-up care and treatment," said the study's lead author, Qiong Wu, PhD, a former post-doctoral researcher in Chen’s lab who now is an assistant professor of biostatistics at the University of Pittsburgh School of Public Health. "While this unified approach might work for some patients, it may be insufficient for high-risk subgroups that require more specialized care. For example, our study found that patients with complex chronic conditions experience the most significant increases in inpatient and emergency visits."

The latent transfer learning system directly pulled out the effects these populations had on hospitals, pointing to exactly where resources should be allocated.

If the machine learning system had been in place around March 2020, Wu believes that it might have provided some key insight to mitigate some of the effects of the pandemic, including focusing resources and care on the groups most likely in need.

"This would have allowed each hospital to better anticipate needs for ICU beds, ventilators, or specialized staff - helping to balance resources between COVID-19 care and other essential services," Wu said. "Furthermore, in the early stages of the pandemic, collaborative learning across hospitals would have been particularly valuable, addressing data scarcity issues while tailoring insights to each hospital’s unique needs."

Looking past crises such as the COVID-19 pandemic and its aftermath, the AI system developed by Wu, Chen, and their team could help hospitals manage much more common conditions.

"Chronic conditions like diabetes, heart disease, and asthma often exhibit significant variation across hospitals because of the differences in available resources, patient demographics, and regional health burdens," Wu said.

The researchers believe the system they developed could be implemented at many hospitals and health systems, only requiring "relatively straightforward" data-sharing infrastructure, according to Wu.Even hospitals not able to actively incorporate machine learning could benefit, through shared information.

"By utilizing the shared findings from network hospitals, it would allow them to gain valuable insights," Wu said.

Wu Q, Pajor NM, Lu Y, Wolock CJ, Tong J, Lorman V, Johnson KB, Moore JH, Forrest CB, Asch DA, Chen Y.
A latent transfer learning method for estimating hospital-specific post-acute healthcare demands following SARS-CoV-2 infection.
Patterns (N Y). 2024 Oct 24;5(11):101079. doi: 10.1016/j.patter.2024.101079

Most Popular Now

Researchers Find Telemedicine may Help R…

Low-value care - medical tests and procedures that provide little to no benefit to patients - contributes to excess medical spending and both direct and cascading harms to patients. A...

AI Revolutionizes Glaucoma Care

Imagine walking into a supermarket, train station, or shopping mall and having your eyes screened for glaucoma within seconds - no appointment needed. With the AI-based Glaucoma Screening (AI-GS) network...

AI may Help Clinicians Personalize Treat…

Individuals with generalized anxiety disorder (GAD), a condition characterized by daily excessive worry lasting at least six months, have a high relapse rate even after receiving treatment. Artificial intelligence (AI)...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

AI can Open Up Beds in the ICU

At the height of the COVID-19 pandemic, hospitals frequently ran short of beds in intensive care units. But even earlier, ICUs faced challenges in keeping beds available. With an aging...

Can AI Help Detect Cognitive Impairment?

Mild cognitive impairment (MCI) can be an early indicator of Alzheimer's disease or dementia, so identifying those with cognitive issues early could lead to interventions and better outcomes. But diagnosing...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

AI Model Predicting Two-Year Risk of Com…

AFib (short for atrial fibrillation), a common heart rhythm disorder in adults, can have disastrous consequences including life-threatening blood clots and stroke if left undetected or untreated. A new study...

Patients' Affinity for AI Messages …

In a Duke Health-led survey, patients who were shown messages written either by artificial intelligence (AI) or human clinicians indicated a preference for responses drafted by AI over a human...

New Research Explores How AI can Build T…

In today’s economy, many workers have transitioned from manual labor toward knowledge work, a move driven primarily by technological advances, and workers in this domain face challenges around managing non-routine...