OmicsFootPrint: Mayo Clinic's AI Tool Offers a New Way to Visualize Disease

Mayo Clinic researchers have pioneered an artificial intelligence (AI) tool, called OmicsFootPrint, that helps convert vast amounts of complex biological data into two-dimensional circular images. The details of the tool are published in a study in Nucleic Acids Research.

Omics is the study of genes, proteins and other molecular data to help uncover how the body functions and how diseases develop. By mapping this data, the OmicsFootPrint may provide clinicians and researchers with a new way to visualize patterns in diseases, such as cancer and neurological disorders, that can help guide personalized therapies. It may also provide an intuitive way to explore disease mechanisms and interactions.

"Data becomes most powerful when you can see the story it's telling," says lead author Krishna Rani Kalari, Ph.D., associate professor of biomedical informatics at Mayo Clinic's Center for Individualized Medicine. "The OmicsFootPrint could open doors to discoveries we haven't been able to achieve before."

Genes act as the body’s instruction manual, while proteins carry out those instructions to keep cells functioning. Sometimes, changes in these instructions - called mutations - can disrupt this process and lead to disease. The OmicsFootPrint helps make sense of these complexities by turning data - such as gene activity, mutations and protein levels - into colorful, circular maps that offer a clearer picture of what’s happening in the body.

In their study, the researchers used the OmicsFootPrint to analyze drug response and cancer multi-omics data. The tool distinguished between two types of breast cancer - lobular and ductal carcinomas - with an average accuracy of 87%. When applied to lung cancer, it demonstrated over 95% accuracy in identifying two types: adenocarcinoma and squamous cell carcinoma.

The study showed that combining several types of molecular data produces more accurate results than using just one type of data.

The OmicsFootPrint also shows potential in providing meaningful results even with limited datasets. It uses advanced AI methods that learn from existing data and apply that knowledge to new scenarios - a process known as transfer learning. In one example, it helped researchers achieve over 95% accuracy in identifying lung cancer subtypes using less than 20% of the typical data volume.

"This approach could be beneficial for research even with small sample size or clinical studies," Dr. Kalari says.

To enhance its accuracy and insights, the OmicsFootPrint framework also uses an advanced method called SHAP (SHapley Additive exPlanations). SHAP highlights the most important markers, genes or proteins that influence the results to help researchers understand the factors driving disease patterns.

Beyond research, the OmicsFootPrint is designed for clinical use. It compresses large biological datasets into compact images that require just 2% of the original storage space. This could make the images easy to integrate into electronic medical records to guide patient care in the future.

The research team plans to expand the OmicsFootPrint to study other diseases, including neurological diseases and other complex disorders. They are also working on updates to make the tool even more accurate and flexible, including the ability to find new disease markers and drug targets.

Tang X, Prodduturi N, Thompson KJ, Weinshilboum R, O'Sullivan CC, Boughey JC, Tizhoosh HR, Klee EW, Wang L, Goetz MP, Suman V, Kalari KR.
OmicsFootPrint: a framework to integrate and interpret multi-omics data using circular images and deep neural networks.
Nucleic Acids Res. 2024 Nov 27;52(21):e99. doi: 10.1093/nar/gkae915

Most Popular Now

Deep Learning Model Helps Detect Lung Tu…

A new deep learning model shows promise in detecting and segmenting lung tumors, according to a study published in Radiology, a journal of the Radiological Society of North America (RSNA)...

One of the Largest Global Surveys of Soc…

As leaders gather for the World Economic Forum Annual Meeting 2025 in Davos, Leaps by Bayer, the impact investing arm of Bayer, and Boston Consulting Group (BCG) announced the launch...

Sam Neville Joins the Highland Marketing…

Leading chief nursing information officer Sam Neville is joining the Highland Marketing advisory board. Sam brings a passion for nursing and safety to the board, which debates the big issues...

New Biomarkers to Detect Colorectal Canc…

Machine learning and artificial intelligence (AI) techniques and analysis of large datasets have helped University of Birmingham researchers to discover proteins that have strong predictive potential for colorectal cancer. In a...

AI Tool that may Assist Underserved Hosp…

As the fields of healthcare and technology increasingly evolve and intersect, researchers are collaborating on the best ways to use emerging technologies such as artificial intelligence (AI) to care for...

AI Model Identifies Potential Risk Genes…

Researchers from the Cleveland Clinic Genome Center have successfully applied advanced artificial intelligence (AI) genetics models to Parkinson's disease. Researchers identified genetic factors in progression and FDA-approved drugs that can...

AI-Supported Breast Cancer Screening - N…

The new findings are published in The Lancet Digital Health. The initial results of the Mammography Screening with Artificial Intelligence (MASAI) study* - a randomised trial to evaluate whether AI...

AI Improves Personalized Cancer Treatmen…

Personalized medicine aims to tailor treatments to individual patients. Until now, this has been done using a small number of parameters to predict the course of a disease. However, these...

The Future of Healthcare is Digital

8 - 10 April 2025, Berlin, Germany. The Berlin Exhibition Centre will be all about digital health from 8 to 10 April 2025. DMEA, Europe's leading event for digital healthcare, organised...

DMEA nova Award: Looking for the Best Id…

8 - 10 April 2025, Berlin, Germany. Innovative startups from the digital health sector can now apply for the DMEA nova Award 2025. We are looking for the best idea or...

Stanford Medicine Study Suggests Physici…

Artificial intelligence-powered chatbots are getting pretty good at diagnosing some diseases, even when they are complex. But how do chatbots do when guiding treatment and care after the diagnosis? For...

OmicsFootPrint: Mayo Clinic's AI To…

Mayo Clinic researchers have pioneered an artificial intelligence (AI) tool, called OmicsFootPrint, that helps convert vast amounts of complex biological data into two-dimensional circular images. The details of the tool...