AI Unlocks Genetic Clues to Personalize Cancer Treatment

A groundbreaking study led by USC Assistant Professor of Computer Science Ruishan Liu has uncovered how specific genetic mutations influence cancer treatment outcomes - insights that could help doctors tailor treatments more effectively. The largest study of its kind, the research analyzed data for more than 78,000 cancer patients across 20 cancer types. Patients received immunotherapies, chemotherapies and targeted therapies.

Using advanced computational analysis, the researchers identified nearly 800 genetic changes that directly impacted survival outcomes. They also discovered 95 genes significantly associated with survival in cancers such as breast, ovarian, skin, and gastrointestinal cancers.

Building on these insights, the team developed a machine learning tool to predict how patients with advanced lung cancer might respond to immunotherapy.

"These discoveries highlight how genetic profiling can play a crucial role in personalizing cancer care," said Liu. "By understanding how different mutations influence treatment response, doctors can select the most effective therapies - potentially avoiding ineffective therapies and focusing on those most likely to help."

Published in Nature Communications, the study highlights the critical roles of genes such as TP53, CDKN2A, and CDKN2B in influencing treatment outcomes, validating these associations with real-world data.

Study co-authors are Shemra Rizzo, Lisa Wang, Nayan Chaudhary, Sophia Maund, and Sarah McGough and Ryan Copping of Genentech; Marius Rene Garmhausen of Roche; and James Zou of Stanford University.

Genetic mutations - changes in DNA - can influence how cancer develops and how a patient responds to treatment. Some mutations occur randomly, while others are inherited.

In cancer, mutations can determine whether a tumor is more aggressive or how it might respond to certain treatments. Today, genetic testing is increasingly used in cancer care to identify these mutations, allowing doctors select treatments more precisely.

For example, Patients diagnosed with non-small cell lung cancer (NSCLC) often receive genomic testing for mutations in genes like KRAS, EGFR and ALK to determine whether targeted therapies or immunotherapies might be effective.

Key findings from the study include:

  • KRAS mutations in advanced non-small cell lung cancer were linked to poorer response to a common treatment (EGFR inhibitors), suggesting alternative treatments may be needed.
  • NF1 mutations improved responses to immunotherapy and worsened responses to certain targeted therapies, highlighting their complex role in treatment.
  • PI3K pathway mutations, which regulate cell growth, had varying effects depending on cancer type, with different responses in breast, melanoma and renal cancers.
  • DNA repair pathway mutations improved immunotherapy effectiveness in lung cancer by increasing tumor instability.
  • Mutations in immune-related pathways were associated with better survival rates for lung cancer patients treated with immunotherapy, suggesting not all mutations hinder treatment success.

While cancer treatments have traditionally followed a one-size-fits-all approach, where patients with the same type of cancer receive the same standard therapies, the study underscores the importance of precision medicine, which tailors treatment based on a patient’s unique genetic makeup.

Yet while vast amounts of mutation data exist, only a small number have clinically validated treatments, limiting potential real-world impact and patient benefit. To bridge this gap, based on their findings, Liu’s team used machine learning to analyze how multiple mutations interact to influence treatment outcomes.

They developed a Random Survival Forest (RSF) model, a predictive tool designed to refine treatment recommendations for lung cancer patients. By integrating large-scale real-world data with machine learning, the model identified new mutation-treatment interactions.

"Our goal was to find patterns that might not be obvious at first glance, and then translate these insights into real-world tools that can expand access to immunotherapy for people with cancer," Lui said. "One key innovation lies in integrating huge amounts of data with advanced statistical and machine learning techniques to uncover previously unrecognized mutation-treatment interactions."

While further clinical trials are needed, Liu sees this study as an important step toward making cancer treatment more precise and personalized.

"This research shows the power of computational science in transforming complex clinical and genomic data into actionable insights," she said. "It’s deeply fulfilling to contribute to tools and knowledge that can directly improve patient care."

Liu R, Rizzo S, Wang L, Chaudhary N, Maund S, Garmhausen MR, McGough S, Copping R, Zou J.
Characterizing mutation-treatment effects using clinico-genomics data of 78,287 patients with 20 types of cancers.
Nat Commun. 2024 Dec 30;15(1):10884. doi: 10.1038/s41467-024-55251-5

Most Popular Now

Sam Neville Joins the Highland Marketing…

Leading chief nursing information officer Sam Neville is joining the Highland Marketing advisory board. Sam brings a passion for nursing and safety to the board, which debates the big issues...

AI Tool that may Assist Underserved Hosp…

As the fields of healthcare and technology increasingly evolve and intersect, researchers are collaborating on the best ways to use emerging technologies such as artificial intelligence (AI) to care for...

AI-Supported Breast Cancer Screening - N…

The new findings are published in The Lancet Digital Health. The initial results of the Mammography Screening with Artificial Intelligence (MASAI) study* - a randomised trial to evaluate whether AI...

AI Model Identifies Potential Risk Genes…

Researchers from the Cleveland Clinic Genome Center have successfully applied advanced artificial intelligence (AI) genetics models to Parkinson's disease. Researchers identified genetic factors in progression and FDA-approved drugs that can...

AI Improves Personalized Cancer Treatmen…

Personalized medicine aims to tailor treatments to individual patients. Until now, this has been done using a small number of parameters to predict the course of a disease. However, these...

The Future of Healthcare is Digital

8 - 10 April 2025, Berlin, Germany. The Berlin Exhibition Centre will be all about digital health from 8 to 10 April 2025. DMEA, Europe's leading event for digital healthcare, organised...

DMEA nova Award: Looking for the Best Id…

8 - 10 April 2025, Berlin, Germany. Innovative startups from the digital health sector can now apply for the DMEA nova Award 2025. We are looking for the best idea or...

Stanford Medicine Study Suggests Physici…

Artificial intelligence-powered chatbots are getting pretty good at diagnosing some diseases, even when they are complex. But how do chatbots do when guiding treatment and care after the diagnosis? For...

OmicsFootPrint: Mayo Clinic's AI To…

Mayo Clinic researchers have pioneered an artificial intelligence (AI) tool, called OmicsFootPrint, that helps convert vast amounts of complex biological data into two-dimensional circular images. The details of the tool...

Testing AI with AI: Ensuring Effective A…

Using a pioneering artificial intelligence platform, Flinders University researchers have assessed whether a cardiac AI tool recently trialled in South Australian hospitals actually has the potential to assist doctors and...

AI Accelerates the Search for New Tuberc…

Tuberculosis is a serious global health threat that infected more than 10 million people in 2022. Spread through the air and into the lungs, the pathogen that causes "TB" can...

Students Around the World Find ChatGPT U…

An international survey study involving more than 23,000 higher education students reveals trends in how they use and experience ChatGPT, highlighting both positive perceptions and awareness of the AI chatbot’s...