Deep Learning to Increase Accessibility, Ease of Heart Imaging

Coronary artery disease is the leading cause of death globally. One of the most common tools used to diagnose and monitor heart disease, myocardial perfusion imaging (MPI) by single photon emission computed tomography (SPECT), uses a radioactive tracer and special camera to provide detailed images of blood flow to the heart, helping doctors detect coronary artery disease and other cardiovascular abnormalities. However, traditional SPECT imaging requires an additional CT scan to ensure accurate results, exposing patients to more radiation and increasing costs.

A new deep learning technique developed by researchers at Washington University in St. Louis with collaborators from Cleveland Clinic and University of California Santa Barbara could transform the way heart health is monitored, making it safer and more accessible.

The method, known as CTLESS, leverages deep learning to remove the CT requirement without compromising diagnostic accuracy. The project, led by Abhinav Jha, associate professor of biomedical engineering in the McKelvey School of Engineering and of radiology at WashU Medicine Mallinckrodt institute of Radiology, was published online Nov. 25 in IEEE Transactions in Medical Imaging.

The next stage of research is for them to validate this method while working to make this tech more available to rural community hospitals. Their cost-saving technique is particularly significant for cases where access to such scans may be limited, such as in rural or otherwise resource-limited communities, said Jha.

SPECT imaging requires an additional CT scan for attenuation compensation (AC), which corrects for how the emitted signal weakens, or attenuates, as it moves through body tissue, potentially obscuring heart images and leading to diagnostic inaccuracies. Such CT scans are typically acquired on a SPECT/CT scanner, but many facilities do not have this CT component.

"Due to cost, complexity, equipment availability, regulatory concerns and other local factors at hospitals and remote care centers, approximately 75% of all SPECT MPI scans are performed without AC, potentially compromising the diagnostic accuracy of these scans," Jha said. “By integrating concepts in physics and deep learning, the proposed CTLESS method estimates a synthetic attenuation map that is then used for AC. Thus, CTLESS may enable a mechanism where an additional scan may not be required.”

CTLESS uses photons from the emission scan to estimate attenuation, which can then be used to enhance image quality and improve diagnostic interpretation. Jha and his collaborators evaluated the performance of CTLESS using real-world clinical data and found that their method showed comparable results to traditional attenuation compensation.

Notably, CTLESS demonstrated robust performance across different scanner models, degrees of heart damage and patient demographics. Jha noted that anatomical differences between men and women result in varying levels of attenuation in these groups and confirmed that the CTLESS method yields similar performance as traditional AC for both sexes. The performance of CTLESS was also relatively stable even as the size of the training data was reduced. All these observations make CTLESS a promising option for widespread clinical adoption following additional validation.

“Our results provide promise that in the future, a separate CT scan may not be required for performing attenuation correction in MPI SPECT. This is particularly significant for cases where access to such scans may be limited, such as in rural or otherwise resource-limited communities,” Jha said. “By providing the ability to perform AC without requiring a CT, the proposed CTLESS method may help boost technological health equality across the U.S. and worldwide.”

Yu Z, Rahman MA, Abbey CK, Laforest R, Siegel BA, Jha A.
CTLESS: A scatter-window projection and deep learning-based transmission-less attenuation compensation method for myocardial perfusion SPECT.
IEEE Transactions in Medical Imaging, Nov. 25, 2024, doi: 10.1109/TMI.2024.3496870

Most Popular Now

Sam Neville Joins the Highland Marketing…

Leading chief nursing information officer Sam Neville is joining the Highland Marketing advisory board. Sam brings a passion for nursing and safety to the board, which debates the big issues...

AI Tool that may Assist Underserved Hosp…

As the fields of healthcare and technology increasingly evolve and intersect, researchers are collaborating on the best ways to use emerging technologies such as artificial intelligence (AI) to care for...

AI-Supported Breast Cancer Screening - N…

The new findings are published in The Lancet Digital Health. The initial results of the Mammography Screening with Artificial Intelligence (MASAI) study* - a randomised trial to evaluate whether AI...

AI Model Identifies Potential Risk Genes…

Researchers from the Cleveland Clinic Genome Center have successfully applied advanced artificial intelligence (AI) genetics models to Parkinson's disease. Researchers identified genetic factors in progression and FDA-approved drugs that can...

AI Improves Personalized Cancer Treatmen…

Personalized medicine aims to tailor treatments to individual patients. Until now, this has been done using a small number of parameters to predict the course of a disease. However, these...

The Future of Healthcare is Digital

8 - 10 April 2025, Berlin, Germany. The Berlin Exhibition Centre will be all about digital health from 8 to 10 April 2025. DMEA, Europe's leading event for digital healthcare, organised...

DMEA nova Award: Looking for the Best Id…

8 - 10 April 2025, Berlin, Germany. Innovative startups from the digital health sector can now apply for the DMEA nova Award 2025. We are looking for the best idea or...

Stanford Medicine Study Suggests Physici…

Artificial intelligence-powered chatbots are getting pretty good at diagnosing some diseases, even when they are complex. But how do chatbots do when guiding treatment and care after the diagnosis? For...

OmicsFootPrint: Mayo Clinic's AI To…

Mayo Clinic researchers have pioneered an artificial intelligence (AI) tool, called OmicsFootPrint, that helps convert vast amounts of complex biological data into two-dimensional circular images. The details of the tool...

Testing AI with AI: Ensuring Effective A…

Using a pioneering artificial intelligence platform, Flinders University researchers have assessed whether a cardiac AI tool recently trialled in South Australian hospitals actually has the potential to assist doctors and...

AI Accelerates the Search for New Tuberc…

Tuberculosis is a serious global health threat that infected more than 10 million people in 2022. Spread through the air and into the lungs, the pathogen that causes "TB" can...

Students Around the World Find ChatGPT U…

An international survey study involving more than 23,000 higher education students reveals trends in how they use and experience ChatGPT, highlighting both positive perceptions and awareness of the AI chatbot’s...