VPH NoE

The Virtual Physiological Human Network of Excellence (VPH NoE) proposal has been designed with 'service to the community' of VPH researchers as its primary purpose. Its aims range from the development of a VPH ToolKit and associated infrastructural resources, through integration of models and data across the various relevant levels of physiological structure and functional organisation, to VPH community building and support. The VPH NoE aims to foster the development of new and sustainable educational, training and career structures for those involved in VPH related science, technology and medicine, and will lay the foundations for a future Virtual Physiological Human Institute.

The VPH NoE constitutes a leading group of universities, institutes and organisations who will, by integrating their experience and ongoing activities in VPH research, promote the creation of an environment that actively supports and nurtures interdisciplinary research, education, training and strategic development. The VPH NoE will lead the coordination of diverse activities within the VPH initiative to deliver: new environments for predictive, patient-specific, evidence-based, more effective and safer healthcare; improved semantic interoperability of biomedical information and contribution to a common health information infrastructure; facile, on-demand access to distributed European computational infrastructure to support clinical decision making; and increased European multidisciplinary research excellence in biomedical informatics and molecular medicine by fostering closer cooperation between ICT, medical device, medical imaging, pharmaceutical and biotech companies.

The VPH NoE will connect the diverse VPH projects, including not only those funded as part of the VPH initiative but also those of previous EC frameworks and national funding schemes, together with industry, healthcare providers, and international organisations, thereby ensuring that these impacts will be realised.

For further information, please visit:
http://www.vph-noe.eu

Project co-ordinator:
University College London (UCL)

Partners:

  • Institut Municipal d'Assistència Sanitària (IMAS)
  • Centre National de la Recherche Scientifique (CNRS)
  • The University of Nottingham
  • Europäisches Laboratorium für Molekularbiologie EMBL
  • The Chancellor, Master and Scholars of the University of Oxford
  • GEIE ERCIM
  • The University of Sheffield
  • Universitat Pompeu Fabra
  • Université Libre de Bruxelles
  • Institut National de Recherche en Informatique et en Automatique
  • The University of Auckland
  • Karolinska Institutet

Timetable: from 06/2008 - to 11/2012

Total cost: € 9.649.516

EC funding: € 7.999.367

Programme Acronym: FP7-ICT

Subprogramme Area: Virtual physiological human

Contract type: Networks of Excellence


Related news article:

Most Popular Now

Stanford Medicine Study Suggests Physici…

Artificial intelligence-powered chatbots are getting pretty good at diagnosing some diseases, even when they are complex. But how do chatbots do when guiding treatment and care after the diagnosis? For...

OmicsFootPrint: Mayo Clinic's AI To…

Mayo Clinic researchers have pioneered an artificial intelligence (AI) tool, called OmicsFootPrint, that helps convert vast amounts of complex biological data into two-dimensional circular images. The details of the tool...

Adults don't Trust Health Care to U…

A study finds that 65.8% of adults surveyed had low trust in their health care system to use artificial intelligence responsibly and 57.7% had low trust in their health care...

Testing AI with AI: Ensuring Effective A…

Using a pioneering artificial intelligence platform, Flinders University researchers have assessed whether a cardiac AI tool recently trialled in South Australian hospitals actually has the potential to assist doctors and...

AI Unlocks Genetic Clues to Personalize …

A groundbreaking study led by USC Assistant Professor of Computer Science Ruishan Liu has uncovered how specific genetic mutations influence cancer treatment outcomes - insights that could help doctors tailor...

The 10 Year Health Plan: What do We Need…

Opinion Article by Piyush Mahapatra, Consultant Orthopaedic Surgeon and Chief Innovation Officer at Open Medical. There is a new ten-year plan for the NHS. It will "focus efforts on preventing, as...

Deep Learning to Increase Accessibility…

Coronary artery disease is the leading cause of death globally. One of the most common tools used to diagnose and monitor heart disease, myocardial perfusion imaging (MPI) by single photon...

People's Trust in AI Systems to Mak…

Psychologists warn that AI's perceived lack of human experience and genuine understanding may limit its acceptance to make higher-stakes moral decisions. Artificial moral advisors (AMAs) are systems based on artificial...

Relationship Between Sleep and Nutrition…

Diet and sleep, which are essential for human survival, are interrelated. However, recently, various services and mobile applications have been introduced for the self-management of health, allowing users to record...

AI Model can Read ECGs to Identify Femal…

A new AI model can flag female patients who are at higher risk of heart disease based on an electrocardiogram (ECG). The researchers say the algorithm, designed specifically for female patients...

New AI Tool Mimics Radiologist Gaze to R…

Artificial intelligence (AI) can scan a chest X-ray and diagnose if an abnormality is fluid in the lungs, an enlarged heart or cancer. But being right is not enough, said...

DMEA 2025 - Innovations, Insights and Ne…

8 - 10 April 2025, Berlin, Germany. Less than 50 days to go before DMEA 2025 opens its doors: Europe's leading event for digital health will once again bring together experts...