DebugIT

In about half a century of antibiotic use, unexpected new challenges have come to light: fast emergence of resistances among pathogens, misuse and overuse of antibiotics; direct and indirect related costs. Antimicrobial resistance results in escalating healthcare costs, increased morbidity and mortality and the emergence or reemergence of potentially untreatable pathogens.

In this context of infectious diseases DebugIT project will (1) detect patient safety issues, (2) learn how to prevent them and (3) actually prevent them in clinical cases. Harmful patterns and trends using clinical and operational information from Clinical Information Systems (CIS) will be detect. This will be done through the 'view' of a virtualised Clinical Data Re-pository (CDR), featuring, transparent access to the original CIS and/or collection and aggregation of data in a local store. Text, image and structured data mining on individual patients as well as on populations will learn us informational and temporal patterns of patient harm.

This knowledge will be fed into a Medical Knowledge Repository and mixed with knowledge coming from external sources (for example guidelines and evidences). After editing and validating, this knowledge will be used by a decision support and monitoring tool in the clinical environment to prevent patient safety issues and report on it.

Outcomes and benefits, both clinical and economical will be measured and reported on. Innovation within this project lays in the virtualisation of Clinical Data Repository through ontology mediation, the advanced mining techniques, the reasoning engine and the consolidation of all these techniques in a comprehensive but open framework. This framework will be implemented, focused on infectious diseases, but will be applicable for all sorts of clinical cases in the future.

For further information, please visit:
http://www.debugit.eu

Project co-ordinator:
Agfa HealthCare (Belgium)

Partners:

  • empirica
  • Gama Sofia Ltd.
  • Institut National de la Santé et de Recherche Medicale
  • Internetový Pristup Ke Zdravotním Informacím Pacienta
  • Linköping University
  • Technological Educational Institute of Lamia
  • University College London
  • University Hospital of Geneva
  • University Medical Center Freiburg
  • University of Geneva

Timetable: from 01/2008 – to 12/2011

Total cost: €8.364.796

EC funding: €6.414.915

Programme Acronym: FP7-ICT

Subprogramme Area: Advanced ICT for risk assessment and patient safety

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

Most Advanced Artificial Touch for Brain…

For the first time ever, a complex sense of touch for individuals living with spinal cord injuries is a step closer to reality. A new study published in Science, paves...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

Using AI to Uncover Hospital Patients�…

Across the United States, no hospital is the same. Equipment, staffing, technical capabilities, and patient populations can all differ. So, while the profiles developed for people with common conditions may...

New AI Tool Uses Routine Blood Tests to …

Doctors around the world may soon have access to a new tool that could better predict whether individual cancer patients will benefit from immune checkpoint inhibitors - a type of...

New Method Tracks the 'Learning Cur…

Introducing Annotatability - a powerful new framework to address a major challenge in biological research by examining how artificial neural networks learn to label genomic data. Genomic datasets often contain...

Picking the Right Doctor? AI could Help

Years ago, as she sat in waiting rooms, Maytal Saar-Tsechansky began to wonder how people chose a good doctor when they had no way of knowing a doctor's track record...

From Text to Structured Information Secu…

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected...

AI Innovation Unlocks Non-Surgical Way t…

Researchers have developed an artificial intelligence (AI) model to detect the spread of metastatic brain cancer using MRI scans, offering insights into patients’ cancer without aggressive surgery. The proof-of-concept study, co-led...

Deep Learning Model Helps Detect Lung Tu…

A new deep learning model shows promise in detecting and segmenting lung tumors, according to a study published in Radiology, a journal of the Radiological Society of North America (RSNA)...

New Study Reveals AI's Transformati…

Intensive care units (ICUs) face mounting pressure to effectively manage resources while delivering optimal patient care. Groundbreaking research published in the INFORMS journal Information Systems Research highlights how a novel...

One of the Largest Global Surveys of Soc…

As leaders gather for the World Economic Forum Annual Meeting 2025 in Davos, Leaps by Bayer, the impact investing arm of Bayer, and Boston Consulting Group (BCG) announced the launch...