DebugIT

In about half a century of antibiotic use, unexpected new challenges have come to light: fast emergence of resistances among pathogens, misuse and overuse of antibiotics; direct and indirect related costs. Antimicrobial resistance results in escalating healthcare costs, increased morbidity and mortality and the emergence or reemergence of potentially untreatable pathogens.

In this context of infectious diseases DebugIT project will (1) detect patient safety issues, (2) learn how to prevent them and (3) actually prevent them in clinical cases. Harmful patterns and trends using clinical and operational information from Clinical Information Systems (CIS) will be detect. This will be done through the 'view' of a virtualised Clinical Data Re-pository (CDR), featuring, transparent access to the original CIS and/or collection and aggregation of data in a local store. Text, image and structured data mining on individual patients as well as on populations will learn us informational and temporal patterns of patient harm.

This knowledge will be fed into a Medical Knowledge Repository and mixed with knowledge coming from external sources (for example guidelines and evidences). After editing and validating, this knowledge will be used by a decision support and monitoring tool in the clinical environment to prevent patient safety issues and report on it.

Outcomes and benefits, both clinical and economical will be measured and reported on. Innovation within this project lays in the virtualisation of Clinical Data Repository through ontology mediation, the advanced mining techniques, the reasoning engine and the consolidation of all these techniques in a comprehensive but open framework. This framework will be implemented, focused on infectious diseases, but will be applicable for all sorts of clinical cases in the future.

For further information, please visit:
http://www.debugit.eu

Project co-ordinator:
Agfa HealthCare (Belgium)

Partners:

  • empirica
  • Gama Sofia Ltd.
  • Institut National de la Santé et de Recherche Medicale
  • Internetový Pristup Ke Zdravotním Informacím Pacienta
  • Linköping University
  • Technological Educational Institute of Lamia
  • University College London
  • University Hospital of Geneva
  • University Medical Center Freiburg
  • University of Geneva

Timetable: from 01/2008 – to 12/2011

Total cost: €8.364.796

EC funding: €6.414.915

Programme Acronym: FP7-ICT

Subprogramme Area: Advanced ICT for risk assessment and patient safety

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

Stanford Medicine Study Suggests Physici…

Artificial intelligence-powered chatbots are getting pretty good at diagnosing some diseases, even when they are complex. But how do chatbots do when guiding treatment and care after the diagnosis? For...

OmicsFootPrint: Mayo Clinic's AI To…

Mayo Clinic researchers have pioneered an artificial intelligence (AI) tool, called OmicsFootPrint, that helps convert vast amounts of complex biological data into two-dimensional circular images. The details of the tool...

Adults don't Trust Health Care to U…

A study finds that 65.8% of adults surveyed had low trust in their health care system to use artificial intelligence responsibly and 57.7% had low trust in their health care...

Testing AI with AI: Ensuring Effective A…

Using a pioneering artificial intelligence platform, Flinders University researchers have assessed whether a cardiac AI tool recently trialled in South Australian hospitals actually has the potential to assist doctors and...

AI Unlocks Genetic Clues to Personalize …

A groundbreaking study led by USC Assistant Professor of Computer Science Ruishan Liu has uncovered how specific genetic mutations influence cancer treatment outcomes - insights that could help doctors tailor...

The 10 Year Health Plan: What do We Need…

Opinion Article by Piyush Mahapatra, Consultant Orthopaedic Surgeon and Chief Innovation Officer at Open Medical. There is a new ten-year plan for the NHS. It will "focus efforts on preventing, as...

Deep Learning to Increase Accessibility…

Coronary artery disease is the leading cause of death globally. One of the most common tools used to diagnose and monitor heart disease, myocardial perfusion imaging (MPI) by single photon...

People's Trust in AI Systems to Mak…

Psychologists warn that AI's perceived lack of human experience and genuine understanding may limit its acceptance to make higher-stakes moral decisions. Artificial moral advisors (AMAs) are systems based on artificial...

Relationship Between Sleep and Nutrition…

Diet and sleep, which are essential for human survival, are interrelated. However, recently, various services and mobile applications have been introduced for the self-management of health, allowing users to record...

AI Model can Read ECGs to Identify Femal…

A new AI model can flag female patients who are at higher risk of heart disease based on an electrocardiogram (ECG). The researchers say the algorithm, designed specifically for female patients...

New AI Tool Mimics Radiologist Gaze to R…

Artificial intelligence (AI) can scan a chest X-ray and diagnose if an abnormality is fluid in the lungs, an enlarged heart or cancer. But being right is not enough, said...

DMEA 2025 - Innovations, Insights and Ne…

8 - 10 April 2025, Berlin, Germany. Less than 50 days to go before DMEA 2025 opens its doors: Europe's leading event for digital health will once again bring together experts...