DebugIT

In about half a century of antibiotic use, unexpected new challenges have come to light: fast emergence of resistances among pathogens, misuse and overuse of antibiotics; direct and indirect related costs. Antimicrobial resistance results in escalating healthcare costs, increased morbidity and mortality and the emergence or reemergence of potentially untreatable pathogens.

In this context of infectious diseases DebugIT project will (1) detect patient safety issues, (2) learn how to prevent them and (3) actually prevent them in clinical cases. Harmful patterns and trends using clinical and operational information from Clinical Information Systems (CIS) will be detect. This will be done through the 'view' of a virtualised Clinical Data Re-pository (CDR), featuring, transparent access to the original CIS and/or collection and aggregation of data in a local store. Text, image and structured data mining on individual patients as well as on populations will learn us informational and temporal patterns of patient harm.

This knowledge will be fed into a Medical Knowledge Repository and mixed with knowledge coming from external sources (for example guidelines and evidences). After editing and validating, this knowledge will be used by a decision support and monitoring tool in the clinical environment to prevent patient safety issues and report on it.

Outcomes and benefits, both clinical and economical will be measured and reported on. Innovation within this project lays in the virtualisation of Clinical Data Repository through ontology mediation, the advanced mining techniques, the reasoning engine and the consolidation of all these techniques in a comprehensive but open framework. This framework will be implemented, focused on infectious diseases, but will be applicable for all sorts of clinical cases in the future.

For further information, please visit:
http://www.debugit.eu

Project co-ordinator:
Agfa HealthCare (Belgium)

Partners:

  • empirica
  • Gama Sofia Ltd.
  • Institut National de la Santé et de Recherche Medicale
  • Internetový Pristup Ke Zdravotním Informacím Pacienta
  • Linköping University
  • Technological Educational Institute of Lamia
  • University College London
  • University Hospital of Geneva
  • University Medical Center Freiburg
  • University of Geneva

Timetable: from 01/2008 – to 12/2011

Total cost: €8.364.796

EC funding: €6.414.915

Programme Acronym: FP7-ICT

Subprogramme Area: Advanced ICT for risk assessment and patient safety

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

500 Patient Images per Second Shared thr…

The image exchange portal, widely known in the NHS as the IEP, is now being used to share as many as 500 images each second - including x-rays, CT, MRI...

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Welcome Evo, Generative AI for the Genom…

Brian Hie runs the Laboratory of Evolutionary Design at Stanford, where he works at the crossroads of artificial intelligence and biology. Not long ago, Hie pondered a provocative question: If...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...

AI can Predict Study Results Better than…

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL...

Using AI to Treat Infections more Accura…

New research from the Centres for Antimicrobial Optimisation Network (CAMO-Net) at the University of Liverpool has shown that using artificial intelligence (AI) can improve how we treat urinary tract infections...

Research Study Shows the Cost-Effectiven…

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings...

New Guidance for Ensuring AI Safety in C…

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an...

Remote Telemedicine Tool Found Highly Ac…

Collecting images of suspicious-looking skin growths and sending them off-site for specialists to analyze is as accurate in identifying skin cancers as having a dermatologist examine them in person, a...

Philips Aims to Advance Cardiac MRI Tech…

Royal Philips (NYSE: PHG, AEX: PHIA) and Mayo Clinic announced a research collaboration aimed at advancing MRI for cardiac applications. Through this investigation, Philips and Mayo Clinic will look to...

Deep Learning Model Accurately Diagnoses…

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic...