New, Robust and Inexpensive Technique for Protein Analysis in Tissues

A new technique to study proteins, which does not require advanced equipment, specialized labs or expensive reagents, has been developed at Uppsala University, Sweden. The technique could be further developed to be used in point of care devices, for instance for diagnostic purposes. The possibility to identify and localize proteins in tissues is essential for understanding disease mechanisms and for diagnostics. However, today very advanced instruments are often needed to study proteins and how they interact with each other. An example is the microscopy technique that was awarded last year's Nobel Prize in chemistry; super resolution fluorescence microscopy.

Such equipment is expensive to purchase and often requires special training to handle. In order to use protein detection for diagnostic purposes, e.g. in a clinic, new, less complicated methods to study proteins are needed. Such methods should be temperature insensitive and not require expensive instruments, costly reagents or specially trained staff.

In the most recent issue of the journal Nature Communications the researchers present a technique that could be used by for instance hospital staff, to detect relevant proteins. The technique is based on the binding of antibodies, either to two sites on the same protein or to two proteins that are localized very close to each other. The antibodies have been linked to DNA strands that will attach to each other if they are close enough. When this happens a chain reaction will start in which increasing numbers of DNA strands are attached. To each DNA strand a fluorescent substance has been linked, which will emit light when it is irradiated with light of a certain wavelength.

"When the chain reaction has run for a while enough fluorescent molecules have been incorporated to allow us to observe them as very bright dots in a microscope, reflecting the presence of a protein of interest. The more dots there more protein," says Ola Söderberg, who has developed the technique together with Masood Kamali-Mogaddam and their research teams.

The chain reaction does not include any enzymes, which means that it can take place at room temperature. The microscopes needed to study the bright dots are relatively simple and commonly available in hospital and research labs. Since two antibodies are bound in the first step "false" signals can be avoided, making the reaction very specific for the studied protein.

"All this implies that our technique can be used as a robust and inexpensive method to localize proteins in tissues. We hope that it soon can be used both for clinical applications and for research purposes," says Ola Söderberg.

The technique has been developed in collaboration with researchers in Uppsala, Scotland and Austria. The results have been published online in the journal Nature Communications.

Reference: Proximity Dependent Initiation of Hybridization Chain Reaction, Nature Communications, DOI: 10.1038/ncomms8294

Science for Life Laboratory (SciLifeLab) is a national centre for molecular biosciences with the focus on health and environmental research. The centre combines advanced technical know-how and state-of-the art equipment with a broad knowledge of translational medicine and molecular bioscience.

Uppsala University - quality, knowledge, and creativity since 1477 World-class research and outstanding education of global benefit to society, business, and culture. Uppsala University is one of northern Europe's highest ranked academic institutions.

Most Popular Now

MEDICA 2024 + COMPAMED 2024: Adapted Hal…

11 - 14 November 2024, Düsseldorf, Germany. The final preparations for MEDICA 2024 and COMPAMED 2024 in Düsseldorf have begun. A total of more than 5,500 exhibitors from approximately 70 countries...

AI does Not Necessarily Lead to more Eff…

The use of artificial intelligence (AI) in hospitals and patient care is steadily increasing. Especially in specialist areas with a high proportion of imaging, such as radiology, AI has long...

Commission Joins Forces with Venture Cap…

The Commission has launched a Trusted Investors Network bringing together a group of investors ready to co-invest in innovative deep-tech companies in Europe together with the EU. The Union's investment...

Why the NHS is Seeking to Make Media Ser…

Opinion Article by Dean Moody, Healthcare Services Director, Airwave Healthcare. Tim Kelsey and Martha Lane Fox called for WiFi to be made available free of charge throughout the NHS back in...

An AI-Powered Pipeline for Personalized …

Ludwig Cancer Research scientists have developed a full, start-to-finish computational pipeline that integrates multiple molecular and genetic analyses of tumors and the specific molecular targets of T cells and harnesses...

Philips and Medtronic Advocacy Partnersh…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Medtronic Neurovascular, a leading innovator in neurovascular therapies, today announced a strategic advocacy partnership. Delivering timely stroke...

Wearable Cameras Allow AI to Detect Medi…

A team of researchers says it has developed the first wearable camera system that, with the help of artificial intelligence (AI), detects potential errors in medication delivery. In a test whose...

AI could Transform How Hospitals Produce…

A pilot study led by researchers at University of California San Diego School of Medicine found that advanced artificial intelligence (AI) could potentially lead to easier, faster and more efficient...

New AI Tool Predicts Protein-Protein Int…

Scientists from Cleveland Clinic and Cornell University have designed a publicly-available software and web database to break down barriers to identifying key protein-protein interactions to treat with medication. The computational tool...

Great Start for Ideas and Innovations: D…

8 - 10 April 2025, Berlin, Germany. From 15 October to 15 November 2024, the DMEA invites experts from business, science, politics and practice to actively participate in shaping the congress...

Start-Ups will Once Again Have a Starrin…

11 - 14 November 2024, Düsseldorf, Germany. The finalists in the 16th Healthcare Innovation World Cup and the 13th MEDICA START-UP COMPETITION have advanced from around 550 candidates based in 62...

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...